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This project contributes to the advancement of the theory and the numerical solution of shape
optimization problems for fluid structure interaction (FSI) based on monolithic approaches. The
mathematical study of this practically important field offers many research opportunities. The
first project investigates ALE in combination with the method of mappings. The second project
addresses a fully Eulerian approach combined with the level set method.

State of the art. Optimal shape design problems for elastic structures in flows arise frequently in
applications. Often, the solid deforms under the flow forces and this requires to employ FSI models,
which form a particularly important subclass of multi-physics problems. For FSI simulations,
partitioned as well as monolithic approaches have been proposed. Partitioned methods use a
Lagrangian (material) framework for the solid and an Eulerian (spatial) framework for the fluid.
They typically apply fixed point iterations to the coupling interface equations, which can be
accelerated by Quasi-Newton or other techniques [18, 34].
Monolithic approaches [20, 22, 27, 31, 55], such as arbitrary Lagrangian-Eulerian (ALE) and fully
Eulerian methods, use the same reference frame for fluid and solid. They often employ joint test
spaces, thus enforcing the stress coupling condition weakly. The ALE framework [20, 22, 31]
uses a reference domain Ω̂ = Ω̂s ∪ Ω̂f ∪ Γ̂i with the Lagrangian frame Ω̂s for the solid, an ALE
reference frame Ω̂f for the fluid and the interface Γ̂i. Fluid reference points x̂ ∈ Ω̂f correspond
to spatial points x ∈ Ωf (t) via homemorphisms T̂f (t) : x̂ 7→ x. Usually, T̂f (t) is defined by
T̂f (x̂, t) = x̂+ ûf (x̂, t), where ûf is a suitable (e.g., harmonic) extension of the solid displacement
ûs to Ω̂f . Fully Eulerian approaches [22, 55] use the spatial reference frame and transform the
elasticity equations accordingly. The Eulerian domain Ω = Ωs(t) ∪ Ωf (t) ∪ Γi(t) is fixed, while its
subdomains are moving in time.

So far, shape optimization for FSI has mainly been tackled by applied, engineering approaches
[32, 33, 40, 41, 42], with some more weight on partitioned methods, which can use specialized
single-physics solvers and tend to be less intrusive than monolithic approaches. Mathematical
analyses of FSI problems [3, 6, 15, 16, 21, 36, 49] mostly rely on monolithic formulations, which
also provide a well suited setting for PDE constrained optimization techniques in function spaces
as well as for duality-based adaptivity. For (very) strong couplings, e.g., in hemodynamics,
monolithic solvers tend to be more robust than partitioned methods [31].

Shape optimization problems can be analyzed and solved with different, yet closely related,
techniques. On one hand, shape calculus [19, 29, 30, 43, 47, 48, 53] can be used to investigate
functionals J(Ω) that depend on a domain Ω. The Eulerian derivative dJ(Ω;V ) admits a
representation by the Hadamard-Zolésio shape gradient, a distribution that is supported on the
design boundary and only acts on the normal boundary variation V · n. If a state equation is
involved, then the Eulerian derivative either contains the shape derivative of the state (sensitivity
approach) or an adjoint state. The (preconditioned) shape gradient can be used to drive a level
set method [2, 9, 10, 46]. An alternative approach is the method of mappings (or perturbation of
identity) [4, 28, 35, 39, 44, 52] which parameterizes the shape by a bi-Lipschitz homeomorphism
τ : Rd → Rd via Ω = τ(Ω̃), where Ω̃ ⊂ Rd is a nominal (or reference) domain. Optimization
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can be performed based on the function J̃ : τ 7→ J(τ(Ω̃)). An underlying state equation is then
transformed to Ω̃ and derivatives of J̃ can be obtained via sensitivities or adjoints. Both calculi
can be deduced from each other. The method of mappings directly yields an optimal control
setting in Banach spaces and it can provide exact discrete derivatives.

In realistic shape optimization problems initial conditions, loadings, or material parameters are
often not known precisely and should be modeled as random functions. In addition, the geometry
of the object can be uncertain. Shape optimization under uncertainty has been investigated only
recently. See e.g. approaches based on level sets [11, 12, 13, 14, 17, 23], or other related works
[1, 37, 38, 51].

First thesis project: Shape optimization for fluid structure interaction using ALE and the
method of mappings to be supervised by Michael Ulbrich. This subproject uses an ALE
approach to obtain a monolithic variational formulation of the FSI problem and combines it with
the method of mappings for shape optimization. These two concepts fit each other very well since
both employ the idea of domain transformations. For a given material shape Ω̂s of the solid, the
ALE formulation provides a reference frame Ω̂ for solid and fluid. The method of mappings is
now used to express shape changes of Ω̂s by a bi-Lipschitz homeomorphism τ : Rd → Rd that
maps a fixed nominal shape frame Ω̃ = Ω̃s ∪ Ω̃f ∪ Γ̃i to the current shape’s reference frame Ω̂ and
satisfies τ(Ã) = Â for A ∈ {Ωs,Ωf ,Γi}. The ALE-FSI formulation can thus be transformed to
the nominal shape frame. We expect that τ is explicitly needed only on Ω̃s. In practice, τ will be
obtained via extension of design boundary deformations, where we can use different approaches
and parameterizations from our earlier work [7, 8, 39]. An adjoint-based approach combined with
derivative-based optimization methods will be developed. For the stationary setting, a formal
adjoint-based method and its implementation were recently discussed in [50]. This can serve as
a starting point, but our main target are unsteady FSI problems, for which a formal sensitivity
approach is considered in [24].

For developing a theoretical foundation, the project will, in exchange with the partner subproject,
study the continuity and differentiability of the state and the reduced objective function w.r.t.
domain variations. The planned work builds on the available existence and regularity theory
for FSI [3, 6, 15, 16, 21, 36, 49] and takes into account the (quite scarce) available literature
[45, 56] (both address the steady case) on the differentiability of FSI problems w.r.t. parameters.
First-order optimality systems will be derived and analyzed. Especially, the adjoint equation and
derivative-based optimization approaches that build on it will be investigated in detail. For FSI,
adjoint equations have so far been derived and applied formally in a stationary setting [50, 54], but
a detailed analysis of their properties, especially in the unsteady case, still remains to be carried
out. Whereas steady FSI shape optimization problems can most likely be analyzed based on
variants of the implicit function theorem, this is questionable for non-stationary problems. In fact,
our previous work on Fréchet material derivatives for the unsteady Navier-Stokes equations [8, 39]
and on the identification of material parameters in the elastic wave equation [5] required advanced,
direct estimation techniques and can provide guidance for the investigation of non-stationary FSI
shape optimization problems.

In previous work on shape optimization for Navier-Stokes flow [7, 8, 39] we used that it is possible
to do essentially all calculations, including adjoints, on the current shape domain. Similarly, we
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expect that in the ALE-FSI case the calculations can mainly be done on the reference domain
Ω̂ (rather than Ω̃) if desired. With a suitable discretization of the method of mappings, we
can achieve that the obtained discrete material derivatives are exact, whereas discretizing the
Hadamard-Zolésio shape gradient directly would ignore the dependency on the structure of the
interior discretization. As a platform for numerical implementations, we can take advantage of
our previous experience and existing software developments in the Trilinos/Sundance framework.
Test cases shall be derived from the DFG FSI benchmark collection in coordination with the
partner project.

Since shape optimization with FSI is a theoretically and numerically challenging problem class,
we will use that there are hierarchies of increasing difficulty, ranging from steady to unsteady,
from fixed to moving fluid-solid interfaces, and from linear to nonlinear models.

Second thesis project: Shape optimization for fluid structure interaction using fully Eulerian
and level set methods to be supervised by Wolfgang Ring. A recently developed alternative
to ALE formulations for FSI are fully Eulerian monolithic approaches [22, 25, 55] where both,
fluid and solid domains are treated as time-variable with an undeformed (reference) configuration
given by Ω̂s and Ω̂f (often Ω̂s = Ωs(0), Ω̂f = Ωf (0)). The respective physical models are set
up in Eulerian coordinates. The advantage in comparison to ALE is that large deformations
are treatable and that the occurrence of topological singularities such as self-contact of the
solid domain is — in principle — possible. This advantage is bought at the cost of a necessary
local front-tracking procedure, usually done employing localized transformations. We propose
to combine the fully Eulerian approach with a level-set based description of the undeformed
geometry in order to solve shape optimization problems in the FSI framework. This is especially
advantageous if the optimal configuration is considerably different from the startup configuration
and the problem of large deformations occurs also in this respect. The front tracking of the
undeformed geometry (the design variable) and the moving boundaries Ωs(t) and Ωf (t) shall
be described in a uniform, level-set based, way. The solution of shape optimization problems
in this setting will need sensitivity information of the state on the moving geometry at time t
with respect to perturbations of the undeformed geometry, thus rendering the development of an
appropriate chain rule in shape sensitivity analysis necessary.

Further topics. In close cooperation with the two proposed PhD projects, E. Ullmann will carry
out initial studies on the effect of random data in shape optimization. The goal is to determine
an optimal shape which is robust with respect to random inputs. This requires minimization of
the expected value of a stochastic cost functional. Shape optimization under uncertainties is a
challenging problem class and therefore this subproject will not consider the full FSI problem.
We restrict the study to steady and/or unsteady Navier-Stokes flows with random viscosity or
random inflow conditions. The method of mappings will be employed, see, e.g., the PhD thesis
[39] for theoretical and numerical results with deterministic data. It has been supervised by M.
Ulbrich and can serve as a starting point. Shape optimization with random loading is studied e.g.
in [13, 14, 17, 26]. In these works the PDE and the shape gradient of the cost functional depend
linearly on the stochastic parameters which simplifies the calculations. The study proposed here
goes beyond these problems since in Navier-Stokes flows the state and hence the cost functionals
will depend nonlinearly on the underlying random parameters.
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