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This project is concerned with optimal control of evolution problems with rate-independent
elements. Its focus lies on the analysis and numerical treatment of the controlled evolution
system, based on generalized differentiability properties of the associated control-to-state mapping.
Problems for ordinary differential equations as well as for reaction-diffusion systems are treated.

State of the art. Optimal control problems for reaction-diffusion equations were considered
in [12] and later in e.g. [13, 2]. Recent papers concerning numerics of such control problems
are [22, 20]. Feedback control for reaction-diffusion equations was considered in [7, 11]; in [7], a
hysteresis operator appears in the boundary condition. Papers [15, 14, 16] treat reaction-diffusion
equations with distributed hysteresis of switching type.

The theory of systems of reaction-diffusion equations is significantly harder than in the scalar case,
because comparison principles and, specifically, the maximum principle are no longer available.
Thus, for many general nonlinear reaction-diffusion systems, global-in-time existence of (weak or
classical) solutions constitutes an open problem, in particular in the physical space 3D. Promising
recent advances were made by applying various duality methods in particular in connection with
using entropy variables, (see e.g. the survey [23] and [10, 6]).

Concerning the numerical solution of the optimality system for a controlled evolution with smooth
dynamics, semismooth Newton methods usually come into play when the optimality system is
not smooth, due to the presence of constraints or of a nonsmooth cost functional. This is now
well established; see e.g. the papers [18, 8, 9] which also illustrate that often a regularization
is required. However, the presence of rate-independent elements in the dynamics introduces
an additional source of nonsmoothness. Discretization of rate-independent evolutions (with or
without a control context) has been discussed in [25, 19, 21, 24, 1]. Semismooth Newton methods
have been used in plasticity for solving the fully discretized problem [17]. In order to consider
semismooth Newton methods for a control problem in a function space setting, however, the
rate-independent part needs to possess certain weak differentiability properties. Such results are
now emerging, apparently for the first time, see [4]. In the context of HJB equations, there are
results concerning the semismoothness of certain maximum operators, the maximum being taken
over a compact metric space (instead of a finite set), see [26].

First thesis project: Control of reaction-diffusion systems with hysteresis to be supervised by
Martin Brokate. This thesis project is devoted to Control of reaction-diffusion systems with
hysteresis. The model dynamics is given by the following prototypical system of reaction-diffusion
equations for concentrations y1 and y2,

∂ty1 −D1∆y1 = f1(y1, y2, w) , (1)
∂ty2 −D2∆y2 = f2(y1, y2, w) , (2)
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in some cylindrical domain ΩT = Ω× (0, T ) plus initial and (e.g. non-flux) boundary conditions,
which is coupled to the equation

w(t) =W[S(y1, y2)](t) (3)

where W is a rate-independent causal ( = hysteresis) operator and S is an operator which maps
(y1, y2) to a function from [0, T ]→ R. A particular case is given by

S(y1, y2)(t) =
∫

Ω
y1(x, t) + y2(x, t) dx , (4)

so S(y1, y2) denotes the total mass arising from the concentrations y1 and y2. Here, the hysteresis
operator represents a buffer mechanism which modulates w(t) in dependence on the total mass.
An applicational background for such models stems from large reaction-diffusion systems in biology
or chemistry, where the dynamics in y1 and y2 is complemented by a (fast) buffer dynamics of
other concentrations, lumped together and heuristically or asymptotically approximated by the
rate-independent operator (y1, y2) 7→ W[S(y1, y2)].

The thesis project will focus on an associated optimal control problem. Namely, one minimizes

J(y, u) =
∫

Ω

2∑
i=1

(yi(x, T )− yi,d(x, T ))2 dx +
∫ T

0

∫
Ω

u(x, t)2 dx dt (5)

subject to the dynamics

∂ty1 −D1∆y1 = f1(y1, y2, w) + u , (6)
∂ty2 −D2∆y2 = f2(y1, y2, w) , (7)

where u is the control, coupled to the rate-independent part given by (3) and (4), and complemented
by initial and boundary conditions.

The main goal is to derive the first order optimality system. The essential difficulty is the
nonsmoothness of the operator W. First, one derives the wellposedness of the dynamical system
for a given control, by extending the results of [27] concerning parabolic equations with hysteresis.
Next, the differentiability of the control-to-state mapping will be investigated, based on the
corresponding results for the hysteresis operator in [4]. This will then lead to the derivation of
first order optimality conditions. Technical challenges, however, will arise since the analytical
treatment of the system (6), (7) is more difficult than the corresponding single equation, and since
generalized derivatives of W require certain function space settings. Here, we hope to extend
current duality- and entropy methods in order to overcome these difficulties, see e.g. [10].

Further topics – first project. Extending the tasks related to (1) – (4), there are several natural
generalizations. First, larger reaction-diffusion systems of three and more equations will lead
to even greater analytical challenges. Secondly, one could consider estimates for the large time
behavior, in particular results on the convergence to an equilibrium state. Moreover, it would be
highly interesting to study how a rate-independent operator like W[S(·, ·)] could be derived in a
singular (e.g. a fast-reaction) limit from larger reaction-diffusion systems. Finally, it would be of
interest to consider hysteresis operators as part of the boundary conditions.

One may also consider (1) – (4) as a feedback control problem with parameters of W to be
designed.
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Second thesis project: Semismooth Newton methods for evolutions with a rate independent
part to be supervised by Martin Brokate. This thesis project is devoted to Semismooth Newton
methods for evolutions with a rate-independent part. The model problem for the overall evolution
is given by an ODE system coupled with a rate-independent operator W,

y′ = f(y, w) + Bu , w =W[y] , (8)

where u is the control and B is a matrix of appropriate dimension. The first task is to establish
the semismoothness of the operator W in suitable function spaces, based on and extending the
results from [4]. Preliminary computations show that in a special situation this is indeed the
case; the generalized derivative needed for semismoothness (the Newton derivative) involves a
suitable family of measures. As a second step, the semismoothness of the control-to-state mapping
u 7→ (y, w) has to be established. For both steps above, one has to choose suitable norms (which
may turn out to be different ones) in the domain and the range of the generalized derivative of
W. Next, an associated optimal control problem will be considered. Namely, one wants to

minimize J(y, w, u) =
∫ T

0
L(y, w, u) dt + LT (y(T )) (9)

subject to (8) on some interval [0, T ], augmented by an initial condition y(0) = y0, and a control
constraint u(t) ∈ U .

Based on the generalized derivative of the control-to-state mapping, the first order optimality
system will be derived; this will improve the result in [3].

Then, a numerical algorithm will be developed in order to solve the optimality system by the
semismooth Newton method. First, the algorithm is constructed in a suitable function space. The
goal is to transform the optimality system into the form

F = 0 , (10)

where F is a Newton-differentiable mapping between suitable function spaces. By the foregoing,
the state equation already has the required properties. For the adjoint equation, a regularization
will have to be employed, since the adjoint equation will include the generalized derivative of W
which is not expected to be semismooth. The treatment of the control constraint will possibly also
use a regularization step, see e.g. [8]. Finally, one will prove that the inverses DF−1 are uniformly
bounded, so the general convergence result for the semismooth Newton method applies.

For actual numerical computations, a fully discrete method is needed. This will involve the
discretization of the Newton derivative of W and its coupling with the integration method.
Numerical experiments will be conducted in order to study the behavior of the algorithm and to
improve the understanding of the control problem.

Further topics – second project. In addition to (8), terminal conditions or state constraints
can be included. This raises questions of controllability and of multiplier regularity, respectively,
which have to be addressed in view of the rate-independent operator W.

One may also replace the ODE in (8) with a semilinear parabolic equation. Once the optimality
conditions for the corresponding optimal control problem are obtained, which is work in progress,
a semismooth Newton method can be developed along the lines described above.
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In a next step, one should consider an ODE problem of the form

y′ + (g(w))′ = f(t, y, w) + Bu , w =W[y] .

In order to obtain semismoothness of the associated control-to-state mapping, properties of
inverses (I +W)−1 of rate-independent operators play a role, see e.g. [5].

There is also the question whether it is possible to derive generalized second order conditions for
the ODE control problem. Currently, this problem appears to be completely open.
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