> Reduced Basis Methods Nonaffine and (some) Nonlinear Problems

Summerschool "Reduced Basis Methods" TU München, September 16-19, 2013

Martin Grepl Institut für Geometrie und Praktische Mathematik, RWTH Aachen

Outline

- 1. Linear Parabolic Problems
 - RB Approximation
 - A Posteriori Error Estimation
 - Sampling Procedure

2. Nonaffine and (some) Nonlinear Problems

- Motivation
- Empirical Interpolation Method
- Nonaffine Problems
- Nonlinear Problems

3. Parametrized Optimal Control Problems

- RB Approximation
- A Posteriori Error Estimation

(vesterday)

(this lecture)

(this lecture)

Motivation Coefficient-function Approximation Error Analysis

"Truth" Problem Statement

Given $\mu \in \mathcal{D} \subset \mathbb{R}^P$, evaluate

 $s(\mu) = \ell(u(\mu);\mu)$

where $u(x;\mu)\in X$ satisfies

$$a(u(\mu),v;\mu)=f(v;\mu), \hspace{1em} orall \, v\in X(\Omega).$$

Assumptions:

- linearity, coercivity, continuity;
- affine parameter dependence.

Motivation Coefficient-function Approximation Error Analysis

Reduced Basis Sample and Space

Parameter samples:

$$S_N = \{\mu^1 \in \mathcal{D}, \dots, \mu^N \in \mathcal{D}\}, \hspace{1em} 1 \leq N \leq N_{ ext{max}},$$
 with

$$S_1 \subset S_2 \subset \ldots \subset S_{N_{\max}-1} \subset S_{N_{\max}} \subset \mathcal{D}.$$

Lagrangian reduced basis spaces:

$$X_N = ext{span}\{ \underbrace{u(\mu^n)}_{ ext{"snapshots"}}, \ 1 \leq n \leq N \}, \ \ 1 \leq N \leq N_{ ext{max}},$$

with

$$X_1 \subset X_2 \subset \ldots \subset X_{N_{\max}-1} \subset X_{N_{\max}} (\subset X).$$

Motivation Coefficient-function Approximation Error Analysis

Reduced Basis Method

Given $\mu \in \mathcal{D} \subset \mathbb{R}^P$, evaluate

$$s_N(\mu) = \ell(u_N(\mu);\mu)$$

where $u_N(x;\mu)\in X_N\subset X$ satisfies

$$a(u_N(\mu),v;\mu)=f(v;\mu), \hspace{1em} orall \, v\in X_N.$$

Furthermore, we can bound the reduced basis error by

$$\|u(\mu)-u_N(\mu)\|_X=rac{\|r(\cdot;\mu)\|_{X'}}{lpha_{ ext{LB}}(\mu)}, \hspace{1em} orall\mu\in\mathcal{D},$$

where $r(v;\mu) = f(v;\mu) - a(u_N(\mu,v;\mu), \ \forall v \in X$, is the residual.

Motivation Coefficient-function Approximation Error Analysis

Affine parameter dependence

Require

also
$$f(v;\mu),\;\ell(v;\mu)$$

$$a(w,v;\mu)=\sum\limits_{q=1}^{Q_a}\Theta^q_a(\mu)\;a^q(w,v),$$

where for $q = 1, \ldots, Q_a$ $\Theta^q_a : \mathcal{D} \to \mathbb{R}, \qquad \mu$ -dependent functions; $a^q : X^e \times X^e \to \mathbb{R}, \quad \mu$ -independent forms.

This assumption is crucial for

- the offline-online decomposition, and thus for
- the computational efficiency of the reduced basis method ...

Empirical Interpolation Method Nonaffine Problems

Nonlinear Problems Nonlinear Reaction Diffusion Problems Motivation Coefficient-function Approximation Error Analysis

Offline-Online Decomposition

We expand
$$u_{N}(\mu) = \sum_{j=1}^{N} u_{Nj}(\mu)\zeta^{j}$$

and obtain $v = \zeta^{i}, 1 \leq i \leq N$
 $a(u_{N}(\mu), v; \mu) = f(v; \mu)$
 $\sum_{j=1}^{N} u_{Nj}(\mu) a(\zeta^{j}, \zeta^{i}; \mu) = f(\zeta^{i}; \mu)$
 $\sum_{j=1}^{N} u_{Nj}(\mu) \sum_{q=1}^{Q_{a}} \Theta_{a}^{q}(\mu) a^{q}(\zeta^{j}, \zeta^{i}) = \sum_{q=1}^{Q_{f}} \Theta_{f}^{q}(\mu) f^{q}(\zeta^{i}) OFFLINE: \mathcal{O}(N)$
ONLINE: $\mathcal{O}(Q_{a}N^{2})$
ONLINE: $\mathcal{O}(Q_{f}N)$

Motivation Coefficient-function Approximation Error Analysis

Affine parameter dependence

. . . but

- not all problems satisfy affine-parameter dependence, so
- where and how does our approach fail in the "nonaffine" case?
- how do we deal with "nonaffine" problems?

Empirical Interpolation Method

Nonaffine Problems Nonlinear Problems Nonlinear Reaction Diffusion Problems Motivation Coefficient-function Approximation Error Analysis

Contaminant Transport [Gre05]

Concentration $u(t;\mu)$ of pollutant in Ω governed by scalar convection-diffusion equation $u(x,t=0;\mu)=0$

$$rac{\partial}{\partial t} u(t;\mu) + \mathrm{U} \cdot
abla u(t;\mu) = \kappa \,
abla^2 u(t;\mu) + g^{\mathrm{PS}}(x;\mu) \, g(t),$$

with source term modeled by

$$g^{\mathrm{PS}}(x;\mu) = rac{50}{\pi} e^{-50((x_1 - x_1^s)^2 + (x_2 - x_2^s)^2)}.$$

Goal: Identify source location \Rightarrow parameter $\mu \equiv (\kappa, x_1^s, x_2^s)$.

Motivation Coefficient-function Approximation Error Analysis

Contaminant Transport – Sample Solutions

Motivation Coefficient-function Approximation Error Analysis

Contaminant Transport – Sample Solutions

Field variable: $\mu = (0.05, 3.1, 0.5)$	$(\mathbb{N}=3720)$
$t = 1 \Delta t$	t = 40 ∆ t
•	•
$t=80\vartriangle t$	t = 120 ∆ t
t = 160 \(t)	t = 200 ∆ t

Motivation Coefficient-function Approximation Error Analysis

Contaminant Transport – Truth Problem Statement

$$\begin{split} \text{Given } \mu \in \mathcal{D} \subset {\rm I\!R}^P \text{, evaluate} & \forall k \in \mathbb{K} \\ s(t^k; \mu) &= \ell(u(t^k; \mu)) \\ \text{where } u(t^k; \mu) \in X \text{ satisfies} & u(t^0; \mu) = 0 \\ m \Big(\frac{u(t^k; \mu) - u(t^{k-1}; \mu)}{\Delta t}, v; \mu \Big) + \\ & \frac{1}{2} a(u(t^k; \mu) + u(t^{k-1}; \mu), v; \mu) \\ &= b(v; \mu) \frac{1}{2} (g(t^k) + g(t^{k-1})), \ \forall v \in X, \\ \text{for } b(v; \mu) &= \int_{\Omega} g^{\text{PS}}(x; \mu) v \text{ with } g^{\text{PS}} \text{ nonaffine.} \end{split}$$

Motivation Coefficient-function Approximation Error Analysis

Nonaffine Source Term

Evaluation of RB quantities

 $(v=oldsymbol{\zeta}_i, \ 1\leq i\leq N_{ ext{max}})$:

$$\begin{array}{lll} b(\zeta_i;\mu) &=& \int_{\Omega} g^{\mathrm{PS}}(x;\mu) \, \zeta_i \\ &=& \frac{50}{\pi} \int_{\Omega} e^{-50((x_1-\mu_2)^2+(x_2-\mu_3)^2)} \, \zeta_i \end{array}$$

requires even in the online stage

 $\mathcal{O}(\mathcal{N}N)$ operations.

Difficulty

There is no (\mathcal{N} -independent) affine representation of $g^{\mathrm{PS}}(x;\mu)$.

Motivation Coefficient-function Approximation Error Analysis

Empirical Interpolation Method [BMNP04, GMNP07]

Main Idea

$$\begin{split} g^{\mathrm{PS}}(x;\mu) &\approx g_{M}^{\mathrm{PS}}(x;\mu) = \sum_{m=1}^{M} \underbrace{\varphi_{Mm}(\mu)}_{\mathsf{EIM}} \underbrace{q_{m}(x)}_{\mathsf{Collateral RB}} \\ \text{Recall:} \quad b(\zeta_{i};\mu) &= \int_{\Omega} g^{\mathrm{PS}}(x;\mu) \, \zeta_{i} \approx \int_{\Omega} g_{M}^{\mathrm{PS}}(x;\mu) \, \zeta_{i} \\ &= \sum_{m=1}^{M} \varphi_{Mm}(\mu) \int_{\Omega} q_{m}(x) \, \zeta_{i} \; , \end{split}$$

If we can calculate the $\varphi_{Mm}(\mu)$ efficiently, we can again follow an offline-online computational procedure, but

- \blacktriangleright how do we calculate the $q_m(x)$ and the $arphi_{Mm}(\mu)$?
- what is the interpolation error introduced?

Motivation Coefficient-function Approximation Error Analysis

Greedy Approach [MNPP07]

Empirical Interpolation: Greedy approach for constructing both

- \blacktriangleright interpolation points $T_M = \{x_1^T \in \Omega, \dots, x_M^T \in \Omega\}$, and
- ▶ sample set $S_M^g \equiv \{\mu_1^g \in \mathcal{D}, \dots, \mu_M^g \in \mathcal{D}\}$ and associated discrete spaces $W_M^g = \operatorname{span}\{q_1, \dots, q_M\}$.

Greedy Procedure: We first choose $\mu_1^g \in \mathcal{D}$ and compute

 $\xi_1 \equiv g(x; \mu_1^g).$

The first interpolation point is

 $x_1 = rg \, \max_{x\in\Omega} |\xi_1(x)|$ and we set $q_1 = \xi_1(x)/\xi_1(x_1)$ and $B^1_{11} = 1.$

Motivation Coefficient-function Approximation Error Analysis

Greedy Approach [MNPP07]

Empirical Interpolation: Greedy approach for constructing both

- \blacktriangleright interpolation points $T_M = \{x_1^T \in \Omega, \dots, x_M^T \in \Omega\}$, and
- ▶ sample set $S_M^g \equiv \{\mu_1^g \in \mathcal{D}, \dots, \mu_M^g \in \mathcal{D}\}$ and associated discrete spaces $W_M^g = \operatorname{span}\{q_1, \dots, q_M\}$.

Greedy Procedure:

We first choose $\mu_1^g \in \mathcal{D}$ and compute

$$\xi_1\equiv g(x;\mu_1^g)$$
 .

The first interpolation point is

 $x_1 = rg \max_{x\in\Omega} |\xi_1(x)|,$ and we set $q_1 = \xi_1(x)/\xi_1(x_1)$ and $B^1_{11} = 1.$

Motivation Coefficient-function Approximation Error Analysis

Greedy Approach

We then proceed by induction to generate S_M^g , W_M^g , and T_M : For $1 \le M \le M_{\max}$, we first solve the interpolation problem $g_M(x_i;\mu) = \sum_{j=1}^M B_{ij}^M \varphi_{M\,j}(\mu) = g(x_i;\mu), \quad 1 \le i \le M,$ where $B_{ij}^M = q_j(x_i), \ 1 \le i, j \le M$, then compute $g_M(x;\mu) \equiv \sum_{m=1}^M \varphi_{M\,m}(\mu)q_m(x),$

and evaluate the interpolation error

$$arepsilon_M(\mu) = \|g(\cdot;\mu) - g_M(\cdot;\mu)\|_{L^\infty(\Omega)}$$

for all $\mu \in \Xi^g_{ ext{train}}$.

Motivation Coefficient-function Approximation Error Analysis

Greedy Approach

We then determine

$$\mu^g_{M+1} \equiv rg\max_{\mu\in \Xi^g_{ ext{train}}} arepsilon_M(\mu)$$

and compute $\xi_{M+1}\equiv g(x;\mu^g_{M+1})$.

To generate the interpolation points we solve the linear system

$$\sum_{j=1}^{M} \sigma_j^M q_j(x_i) = \xi_{M+1}(x_i), \quad 1 \le i \le M$$

and we set
$$r_{M+1}(x) = \xi_{M+1}(x) - \sum\limits_{j=1}^{M} \ \sigma_j^M \ q_j(x).$$

The next interpolation point is

$$x_{M+1} = rg \, \max_{x \in \Omega} |r_{M+1}(x)|,$$
 and $q_{M+1}(x) = r_{M+1}(x)/r_{M+1}(x_{M+1}).$

Motivation Coefficient-function Approximation Error Analysis

Greedy Approach

We then determine

$$\mu^g_{M+1} \equiv rg\max_{\mu\in \Xi^g_{ ext{train}}} arepsilon_M(\mu)$$

and compute $\xi_{M+1}\equiv g(x;\mu^g_{M+1}).$

To generate the interpolation points we solve the linear system

$$\sum\limits_{j=1}^M \, \sigma_j^M \, q_j(x_i) = \xi_{M+1}(x_i), \quad 1 \leq i \leq M$$

and we set
$$r_{M+1}(x) = \xi_{M+1}(x) - \sum\limits_{j=1}^M \, \sigma_j^M \, q_j(x).$$

The next interpolation point is

$$x_{M+1} = rg \, \max_{x \in \Omega} |r_{M+1}(x)|,$$
 and $q_{M+1}(x) = r_{M+1}(x)/r_{M+1}(x_{M+1}).$

Motivation Coefficient-function Approximation Error Analysis

Example/Demo

We consider the nonaffine function

$$g(x;\mu)\equivrac{10}{\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{0.1}
ight)^2}$$
 for $x\in\Omega\equiv~[0,1]$ and $\mu\in\mathcal{D}\equiv[0.4,0.6]$.

Motivation Coefficient-function Approximation Error Analysis

Properties

If M_{\max} is smaller than the dimension of span \mathcal{M}^g , where $\mathcal{M}^g \equiv \{g(\cdot; \mu) | \mu \in \mathcal{D}\}$, for any $M \leq M_{\max}$ we have

- ▶ the space W_M^g is of dimension M and coincides with $\operatorname{span}\{\xi_1,\ldots,\xi_M\}$
- the matrix B^M lower triangular with unity diagonal (and hence invertible)
- the interpolation is well-defined

It follows that for any $g(x;\mu)\in W^g_M$ we have

$$g_M(x;\mu)=g(x;\mu)$$

i.e., the interpolation is exact for all $g(x;\mu) \in W^g_M$.

Motivation Coefficient-function Approximation Error Analysis

A Priori Stability: Lebesgue constant

We define a Lebesgue constant

$$\Lambda_M \equiv \sup_{x \in \Omega} \sum_{m=1}^M |V_m^M(x)|,$$

where the $V_m^M(x) \in W_M^g$ is the associated Lagrange basis,
 $V_m^M(x_n) \equiv \delta_{mn}, \ 1 \leq m, n \leq M.$

We can prove

Proposition

The Lebesgue constant Λ_M satisfies $\Lambda_M \leq 2^M - 1$.

and

Proposition

The interpolation error $arepsilon_M(\mu)$ satisfies $arepsilon_M(\mu) \leq (1+\Lambda_M) \inf_{z \in W^g_M} \|g(\cdot;\mu)-z\|_{L^\infty(\Omega)}.$

Motivation Coefficient-function Approximation Error Analysis

A Posteriori Error Estimation

We have two options:

- Method 1: "Next Point" Estimator [BMNP04, GMNP07]
 - ► Very inexpensive to evaluate ⇒ one additional evaluation of $g(x; \mu)$ at a single point in Ω .
 - ► In general not a rigorous upper bound for the error ⇒ requires the saturation hypothesis.
- Method 2: Rigorous Estimator [EGP10]
 - ▶ Higher offline cost, since we require
 ⇒ analytical upper bounds for parametric derivatives
 ⇒ EIM approximation error at finite set of points in D.
 - Provides rigorous upper bound for the error

Motivation Coefficient-function Approximation Error Analysis

A Posteriori Error Estimation

Given an approximation $g_M(x;\mu)$ for $M\leq M_{
m max}-1$, we define

$$\widehat{arepsilon}_M(\mu)\equiv |g(x_{M+1};\mu)-g_M(x_{M+1};\mu)|$$

and obtain

Proposition

If
$$g(\,\cdot\,;\mu)\in W^g_{M+1}$$
, then $\|g(\,\cdot\,;\mu)-g_M(\,\cdot\,;\mu)\|_{L^\infty(\Omega)}=\hat{arepsilon}_M(\mu).$

Note

- ▶ in general $g(\cdot; \mu) \not\in W^g_{M+1}$, and hence our estimator $\hat{\varepsilon}_M(\mu)$ is indeed a lower bound; however,
- ▶ if $\varepsilon_M(\mu) \to 0$ very fast, we expect (and check) that the effectivity, $\eta_M(\mu) \equiv \hat{\varepsilon}_M(\mu) / \varepsilon_M(\mu) \approx 1$.

Motivation Coefficient-function Approximation Error Analysis

Numerical Example

We consider the nonaffine function

$$G(x;\mu)\equivrac{1}{\sqrt{(x_1-\mu_{(1)})^2+(x_2-\mu_{(2)})^2}}$$

for $x\in\Omega\equiv]0,1[$ 2 and $\mu\in\mathcal{D}\equiv [-1,-0.01]^{2}.$

M	$arepsilon_{M, ext{max}}^{st}$	$\overline{ ho}_M$	Λ_M	$\overline{\eta}_M$	κ_M
8	$8.30 \mathrm{E}{-}02$	0.68	1.76	0.17	3.65
16	$4.22 \mathrm{E}{-}03$	0.67	2.63	0.10	6.08
24	$2.68 \mathrm{E-04}$	0.49	4.42	0.28	9.19
32	$5.64 \mathrm{E}{-}05$	0.48	5.15	0.20	12.86
40	$3.66 \mathrm{E-06}$	0.54	4.98	0.60	18.37
48	$6.08 \mathrm{E}{-}07$	0.37	7.43	0.29	20.41

Table: NE 1: $\varepsilon_{M,\max}^*$ is the best fit error, $\overline{\rho}_M$ is the averaged ratio $\frac{\varepsilon_M(\mu)}{\varepsilon_M^*(\mu)(1+\Lambda_M)}$, $\overline{\eta}_M$ is the average effectivity, and \varkappa_M is the condition number of B^M .

Empirical Interpolation Method

Nonaffine Problems Nonlinear Problems Nonlinear Reaction Diffusion Problems Motivation Coefficient-function Approximation Error Analysis

Numerical Example

Parameter sample set S_M^g , $M_{
m max}=51$, and interpolation points $x_m, \ 1\leq m\leq M_{
m max}.$

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Nonaffine "Truth" Problem Statement

Given
$$\mu \in \mathcal{D} \subset \mathbb{R}^P$$
, evaluate

$$(\cdot) = (\cdot)^{\mathcal{N}}$$

 $s(\mu) = \ell(u(\mu);\mu)$

where $u(x;\mu)\in X$ satisfies

 $a(u(\mu),v;\mu)=f(v;g(x;\mu)), \quad \forall \, v\in X.$

We consider the particular form

$$a(w,v;\mu)=a_0(w,v)+a_1(w,v;g(x;\mu)), \hspace{1em} orall w,v\in X.$$
where $g(x;\mu)\in L^\infty(\Omega)$ is nonaffine.

Problem Statement Reduced Basis Approximation *A Posteriori* Error Estimation Numerical Results

Hypotheses

We assume

 $ightarrow a_0\,:\,X imes X
ightarrow{
m IR}$ is bilinear and parameter independent

$$a_0(w,v) = \int\limits_\Omega
abla w \,
abla v, \quad orall w, v \in X$$

•
$$a_1$$
 : $X imes X imes L^\infty(\Omega) o {\rm I\!R}$ is trilinear

$$a_1(w,v,z) = \int\limits_\Omega w\, v\, z, \ \ orall w,v \in X, \ z \in L^\infty(\Omega)$$

• and
$$f(v;g(x;\mu)) = \int\limits_{\Omega} v \, g(x;\mu)$$
 is a linear form.

Problem Statement Reduced Basis Approximation *A Posteriori* Error Estimation Numerical Results

Coercivity & Continuity

We also assume that $a:X imes X imes \mathcal{D}
ightarrow\mathbb{R}$ is

coercive

$$(0 <) lpha(\mu) \equiv \inf_{w \in X} rac{a(w,w;\mu)}{\|w\|_X^2};$$

$$\gamma(\mu)\equiv \sup_{w\in X}\sup_{v\in X}rac{a(w,v;\mu)}{\|w\|_X\|v\|_X}\ (<\infty),$$

and that a_1 satisfies

$$egin{aligned} a_1(w,v,z) &\leq \gamma_{a_1} \|w\|_X \, \|v\|_X \, \|z\|_{L^\infty(\Omega)}, \ &orall w, v \in X, \; z \in L^\infty(\Omega). \end{aligned}$$

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Reduced Basis Sample and Space

Parameter samples:

$$S_N=\{\mu^1\in\mathcal{D},\ldots,\mu^N\in\mathcal{D}\}, \ \ 1\leq N\leq N_{ ext{max}},$$
 with

$$S_1 \subset S_2 \subset \ldots \subset S_{N_{\max}-1} \subset S_{N_{\max}} \subset \mathcal{D}.$$

Lagrangian reduced basis spaces:

$$X_N = ext{span}\{ \underbrace{u(\mu^n)}_{ ext{"snapshots"}}, \ 1 \leq n \leq N \}, \ \ 1 \leq N \leq N_{ ext{max}},$$

with

$$X_1 \subset X_2 \subset \ldots \subset X_{N_{\max}-1} \subset X_{N_{\max}} (\subset X).$$

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Reduced Basis Approximation

Given $\mu \in \mathcal{D} \subset \mathbb{R}^P$, evaluate $s_{N,M}(\mu) = \ell(u_{N,M}(\mu);\mu)$ where $u_{N,M}(x;\mu) \in X_N \subset X$ satisfies $a_0(u_{N,M}(\mu), v) + a_1(u_{N,M}(\mu), v; g_M(x;\mu)) =$ $f(v; g_M(x;\mu)), \quad \forall v \in X_N.$

where

$$g_M(x;\mu)\equiv\sum_{m=1}^M arphi_{M\,m}(\mu)q_m(x),$$

 $\quad \text{and} \quad$

$$\int_{j=1}^M B^M_{ij} \varphi_{M\,j}(\mu) = g(x_i;\mu), \quad 1 \leq i \leq M.$$

Admits offline-online treatment: online cost $\mathcal{O}(M^2 + MN^2 + N^3)$

Problem Statement Reduced Basis Approximation *A Posteriori* Error Estimation Numerical Results

Error Residual Equation

The error, $e(\mu)\equiv u(\mu)-u_N(\mu)\in X$, satisfies

$$egin{aligned} a_0(e(\mu),v) + a_1(e(\mu),v;g(x;\mu)) &= \ r(v;\mu) + f(v;g(x;\mu) - g_M(x;\mu)) \ - a_1(u_{N,M}(\mu),v;g(x;\mu) - g_M(x;\mu)), \ orall \, v \in X, \end{aligned}$$

where the residual is defined as

$$egin{aligned} r(v;\mu) &\equiv f(v;g_M(x;\mu)) \ &-a_0(u_N(\mu),v) - a_1(u_N(\mu),v;g_M(x;\mu)), \ &orall v \in X. \end{aligned}$$

Problem Statement Reduced Basis Approximation *A Posteriori* Error Estimation Numerical Results

Energy Norm & Output Bound

Energy norm bound [Ngu07]

$$\Delta_{N,M}^{u}(\mu) = \frac{1}{\alpha_{\text{LB}}(\mu)} \left(\underbrace{\|r(\cdot;\mu)\|_{X'}}_{\text{affine}} + \underbrace{\hat{\varepsilon}_{M}(\mu)\Phi_{M}^{\text{na}}(\mu)}_{\text{nonaffine}} \right),$$
where $\alpha_{\text{LB}}(\mu)$... Lower bound of coercivity constant,
 $\|r(\cdot;\mu)\|_{X'}$... dual norm of residual,
 $\hat{\varepsilon}_{M}(\mu)$... interpolation induced error.

and

$$\Phi^{ ext{na}}_M(\mu) = \sup_{v \in X} rac{f(v;q_{M+1}) - a_1(u_{N,M},v;q_{M+1})}{\|v\|_X}$$

Problem Statement Reduced Basis Approximation *A Posteriori* Error Estimation Numerical Results

Energy Error Bound

Proposition (Energy Error Bound)

If $g(x;\mu)\in W^g_{M+1}$, the error, $e(\mu)=u(\mu)-u_{N,M}(\mu)$, satisfies

$$\|e(\mu)\|_X \leq \Delta^u_{N,M}(\mu), \quad \forall \mu \in \mathcal{D},$$

and for any $N=1,\ldots,N_{\max}$ and any $M=1,\ldots,M_{\max}$.

Note:

- ▶ In general $g(x;\mu) \notin W^g_{M+1}$, thus $\|e(\mu)\|_X \lessapprox \Delta^u_{N,M}(\mu), \quad \forall \mu \in \mathcal{D}.$
- Admits offline-online treatment: online cost $\mathcal{O}(M^2N^2)$.

Problem Statement Reduced Basis Approximation *A Posteriori* Error Estimation Numerical Results

Output Error Bound

We define

an

the output error bound:

$$\Delta_{N,M}^s(\mu) \equiv \|\ell(\cdot;\mu)\|_{X'} \Delta_{N,M}(\mu)$$

d the output effectivity: $\eta_N^s(\mu) \equiv rac{\Delta_N^s(\mu)}{|s(\mu) - s_N(\mu)|}$

Proposition (Output Error Bound)

For any $N = 1, \ldots, N_{\max}$ and any $M = 1, \ldots, M_{\max}$, the error, $|s(\mu) - s_N(\mu)|$, satisfies

 $|s(\mu)-s_N(\mu)|\leq \Delta^s_{N,M}(\mu), \hspace{0.5cm} orall \mu\in \mathcal{D}.$

Problem Statement Reduced Basis Approximation *A Posteriori* Error Estimation Numerical Results

Output Error Bound

We define

the output error bound:

$$\Delta_{N,M}^s(\mu) \equiv \|\ell(\cdot;\mu)\|_{X'} \Delta_{N,M}(\mu)$$

and the output effectivity: $\eta_N^s(\mu) \equiv rac{\Delta_N^s(\mu)}{|s(\mu) - s_N(\mu)|}$

Proposition (Output Error Bound)

For any $N=1,\ldots,N_{\max}$ and any $M=1,\ldots,M_{\max}$, the error, $|s(\mu)-s_N(\mu)|$, satisfies

$$|s(\mu)-s_N(\mu)|\leq \Delta^s_{N,M}(\mu), ~~orall \mu\in \mathcal{D}.$$

Problem Statement Reduced Basis Approximation *A Posteriori* Error Estimation Numerical Results

Error Bounds – Remarks

Remarks:

- ▶ The *a posteriori* error bounds are
 - ightarrow rigorous only for $g(x;\mu)\in W^g_{M+1}$, but
 - are very cheap to evaluate one additional evaluation of g(x; μ) at one point in Ω.
- We can replace the "next point" estimator with the rigorous a posteriori error estimator, but they require more extensive offline computations [KGV12].
- The dual formulation can be extended to the nonaffine case [KGV12]

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Model Problem

We consider the model problem with

$$g(x;\mu)\equivrac{1}{\sqrt{(x_1-\mu_{(1)})^2+(x_2-\mu_{(2)})^2}}$$

for $x\in\Omega\equiv]0,1[$ 2 and $\mu\in\mathcal{D}\equiv [-1,-0.01]^{2}.$

Maximum relative error and bounds in field variable and output [N]

N	M	$\epsilon^u_{ m max,rel}$	$\Delta^u_{ m max,rel}$	$ar{\eta}^u$	$\epsilon^s_{ m max,rel}$	$\Delta^s_{ m max,rel}$	$ar{\eta}^s$
4	15	$1.20 \mathrm{E} - 02$	$1.35 \mathrm{E} - 02$	1.16	$5.96 \mathrm{E} - 03$	$1.43 \mathrm{E}{-02}$	11.32
8	20	$1.14 \mathrm{E} - 03$	$1.23 \mathrm{E} - 03$	1.01	$2.42 \mathrm{E} - 04$	$1.30 \mathrm{E} - 03$	13.41
12	25	$2.54 \mathrm{E} - 04$	$2.77 \mathrm{E} - 04$	1.08	$1.76 \mathrm{E} - 04$	$2.92 \mathrm{E} - 04$	17.28
16	30	$3.82 \mathrm{E} - 05$	$3.93 \mathrm{E} - 05$	1.00	$7.92 \mathrm{E} - 06$	$4.15 \mathrm{E} - 05$	20.40

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Model Problem

Maximum relative error in the field variable

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Contaminant Transport

Concentration $u(t;\mu)$ of pollutant in Ω governed by scalar convection-diffusion equation $u(x,t=0;\mu)=0$

$$rac{\partial}{\partial t} u(t;\mu) + \mathrm{U} \cdot
abla u(t;\mu) = \kappa \,
abla^2 u(t;\mu) + g^{\mathrm{PS}}(x;\mu) \, g(t),$$

with source term modeled by

$$g^{\mathrm{PS}}(x;\mu) = rac{50}{\pi} e^{-50((x_1 - x_1^s)^2 + (x_2 - x_2^s)^2)}.$$

Goal: Identify source location \Rightarrow parameter $\mu \equiv (\kappa, x_1^s, x_2^s)$.

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Energy Norm & Output Bound

Energy norm bound [Gre05]

$$\Delta_{N,M}^{uk}(\mu) = \left\{ \frac{2\Delta t}{\alpha_{\text{LB}}(\mu)} \left(\underbrace{\sum_{k'=1}^{k} \|r_{N,M}^{k'}(\cdot;\mu)\|_{X'}^2}_{\text{affine}} + \underbrace{\hat{\varepsilon}_{M}^2(\mu) \sum_{k'=1}^{k} \Phi_{M}^{\text{na}}(t^{k'};\mu)^2}_{\text{nonaffine}} \right) \right\}^{\frac{1}{2}},$$
where $\alpha_{\text{LB}}(\mu)$... lower bound of coercivity constant,

$$\|r_{N,M}^k(\cdot;\mu)\|_{X'}$$
 ... dual norm of residual,
 $\hat{arepsilon}_M(\mu)$... interpolation induced error.

Output bound

$$\Delta^{s\,k}_{N,M}(\mu) \equiv \left(\sup_{v \in Y} \tfrac{\ell(v)}{\|v\|_{L^2(\Omega)}}\right) \Delta^{u\,k}_{N,M}(\mu).$$

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Contaminant Dispersion - Convergence: Energy Norm

Results for random sample $\Xi_{\text{Test}} \in \mathcal{D}$ of size 2000.

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Contaminant Dispersion – Convergence: Energy Norm

N	M	$\epsilon^y_{N,M, ext{max,rel}}$	$\Delta^y_{N,M, ext{max,rel}}$	$ar{\eta}^y_{N,M}$
40	20	$7.79\mathrm{E}{-}02$	$2.13 \mathrm{E-01}$	3.62
80	30	$9.25\mathrm{E}{-}03$	$3.80 \mathrm{E}{-}02$	3.20
120	40	$1.49 \mathrm{E}{-}03$	$3.05\mathrm{E}{-}03$	2.29
160	50	$4.52 \mathrm{E}{-}04$	$7.43 \mathrm{E}{-}04$	2.09
200	60	$1.41 \mathrm{E-04}$	$2.32\mathrm{E}{-}04$	2.00

Results for random sample $\Xi_{\mathrm{Test}} \in \mathcal{D}$ of size 2000.

Problem Statement Reduced Basis Approximation *A Posteriori* Error Estimation Numerical Results

Contaminant Dispersion – Convergence: Output

N	M	$\epsilon^s_{N,M, ext{max,rel}}$	$\Delta^s_{N,M, ext{max,rel}}$	$ar{\eta}^s_{N,M}$
40	20	$3.82 \mathrm{E}{-02}$	$1.86\mathrm{E}+00$	61.2
80	30	$7.25\mathrm{E}{-}03$	$3.32\mathrm{E}{-}01$	64.0
120	40	$6.71 \mathrm{E}{-}04$	$2.65 \mathrm{E} - 02$	66.9
160	50	$1.13 \mathrm{E}{-}04$	$6.47 \mathrm{E}{-}03$	78.4
200	60	$4.42\mathrm{E}{-}05$	$2.02\mathrm{E}\!-\!03$	74.1

Results for random sample $\Xi_{\mathrm{Test}} \in \mathcal{D}$ of size 2000.

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Contaminant Dispersion - Online Computational Times

N	M	$s_{N,M}(t^k;\mu)$	$\Delta^s_{N,M}(t^k;\mu)$	$s(t^k;\mu)$
40	20	$4.36 \mathrm{E}{-}03$	$8.85 \mathrm{E}{-03}$	1
80	30	$1.09 \mathrm{E}{-}02$	$1.24 \mathrm{E-02}$	1
120	40	$2.07 \mathrm{E}\!-\!02$	$1.73 \mathrm{E} - 02$	1
160	50	$3.39\mathrm{E}{-}02$	$2.36 \mathrm{E}\!-\!02$	1
200	60	$5.11 \mathrm{E-02}$	$3.16\mathrm{E}\!-\!02$	1

Output & Bound $orall k \in {
m I\!K}$

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Truth Problem Statement

$$\begin{split} \text{Given } \mu \in \mathcal{D} \text{, evaluate} & \forall k \in \mathbb{K} \\ s^k(\mu) &= \ell(u^k(\mu)) \\ \text{where } u^k(\mu) \in X \text{, } 1 \leq k \leq K \text{, satisfies} & u^0(\mu) = 0 \\ \frac{1}{\Delta t} m(u^k(\mu) - u^{k-1}(\mu), v) + a(u^k(\mu), v; \mu) \\ &+ \int_{\Omega} g^{\text{nl}}(u^k(\mu); x; \mu) v = b(v)u(t^k), \ \forall v \in X. \end{split}$$

Assumptions:

- $-g^{\mathrm{nl}}:\mathbb{R} imes\Omega imes\mathcal{D} o\mathbb{R}$ continuous;
- $-g^{\mathrm{nl}}(u_1;x;\mu)\leq g^{\mathrm{nl}}(u_2;x;\mu), \ orall u_1\leq u_2;$
- $-orall u\in \mathbb{R},\; u\,g^{\mathrm{nl}}(u;x;\mu)\geq 0$, for any $x\in \Omega,\; \mu\in \mathcal{D}.$

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Standard RB Approach

Sample Computation:

We expand $u_N(t^k;\mu) = \sum_{j=1}^N u_{Nj}(t^k;\mu) \zeta_j$, and obtain $(v = \zeta_i, \ i, j \in \mathcal{N})$

$$\begin{split} \int_{\Omega} g(u_N(t^k;\mu);x;\mu)\zeta_i &= \\ \int_{\Omega} g\left(\sum_{j=1}^N u_{Nj}(t^k;\mu)\,\zeta_j;x;\mu\right)\zeta_i \\ &\Rightarrow \mathcal{N}\text{-dependent online cost.} \end{split}$$

Note:

0

- Standard RB-Galerkin recipe suffices for (at most) quadratic nonlinearities: O(N⁴) online cost ([VPP03, VP05, NVP05]...)
- ► Higher order or nonpolynomial nonlinearities ⇒ EIM.

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Empirical Interpolation Method

Interpolation Points and Spaces:

$$egin{aligned} T_M^g &= \{x_1^T \in \Omega, \dots, x_M^T \in \Omega\} & ext{and} \ W_M^g &= & ext{span}\{\xi_m, \ 1 \leq m \leq M\} \ &= & ext{span}\{q_1, \dots, q_M\}, & ext{1} \leq M \leq M_{ ext{max}}, \ & \xi_m ext{ are chosen by } ext{POD}_t ext{-Greedy}_\mu ext{ procedure.} \end{aligned}$$

Approximation : for given $w^k(\mu) \in Y$

$$g^{\mathrm{nl}}(w^k(\mu);x;\mu) pprox g_M^{\mathrm{nl},w^k}(x;\mu) = \sum_{m=1}^M \varphi_{Mm}^k(\mu) \, q_m(x),$$

where

$$\sum\limits_{m=1}^M q_m(x_n^T) \, arphi_{Mm}^k(\mu) = g^{\mathrm{nl}}(w(x_n^T,t^k;\mu);x_n^T;\mu), \; 1 \leq n \leq M.$$

Note: $arphi_{Mm}^k(\mu) = arphi_{Mm}(t^k;\mu)$, function of (discrete) time t^k .

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Sampling Procedure

POD_t -Greedy_µ Algorithm for EIM [Gre12a]

Set
$$\mu^* = \mu_0^*, \; W_0^g = \{0\}, \; S_0^g = \{0\}, \; M = 0$$

while
$$M \leq M_{ ext{max}}$$

$$\begin{split} e^k_{M,\text{EIM}}(\mu^*) &= g^{\text{nl}}(u^k(\mu^*);x;\mu^*) - g^{\text{nl},u^k}_M(x;\mu^*), \ 1 \le k \le K \\ S^g_M &= S^g_{M-1} \cup \mu^*; \\ W^g_M &= W^g_{M-1} + \text{POD}_{L^2(\Omega)}(\{e^k_{M,\text{EIM}}(\mu^*), 1 \le k \le K\}, 1); \\ M &= M + 1; \end{split}$$

Calculate $x_M, q_M;$

$$\mu^* = rg\max_{\mu\in \Xi_{ ext{train}}}\sum_{k=1}^K arepsilon_M^k(\mu);$$

end

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Galerkin Projection

$$\begin{split} \text{Given } \mu \in \mathcal{D} \text{, evaluate} & \forall k \in \mathbb{K} \\ s_{N,M}^k(\mu) &= \ell(u_{N,M}^k(\mu)) \\ \text{where } u_{N,M}^k(\mu) \in W_N^u \text{, } 1 \leq k \leq K \text{, satisfies} \quad u_{N,M}^0(\mu) = 0 \\ \frac{1}{\Delta t} m(u_{N,M}^k(\mu) - u_{N,M}^{k-1}(\mu), v) + a(u_{N,M}^k(\mu), v; \mu) \\ &+ \int_{\Omega} g_M^{nl, u_{N,M}^k}(x; \mu) \ v = b(v) \ u(t^k), \quad \forall v \in W_N^u. \end{split}$$

Computational Procedure:

- Admits an offline-online treatment
- Online $cost^{\dagger}$ is $\mathcal{O}(MN^2 + N^3)$ and thus independent of \mathcal{N} .

[†] Cost per Newton iteration per timestep.

Problem Statement Reduced Basis Approximation *A Posteriori* Error Estimation Numerical Results

Energy Norm & Output Bound

Energy norm bound [Gre12a]

$$\Delta_{N,M}^{u\,k}(\mu) = \left\{ \frac{2\Delta t}{\alpha_{\rm LB}(\mu)} \left(\underbrace{\sum_{k'=1}^{k} \varepsilon_{N,M}^{k'}(\mu)^2}_{\substack{linear\\ contribution to error bound}} + \underbrace{\vartheta_M^{q-2} \sum_{k'=1}^{k} \widehat{\varepsilon}_M^{k'}(\mu)^2}_{\substack{nonlinear\\ nonlinear\\ contribution to error bound}} \right) \right\}^{\frac{1}{2}},$$

where
$$\alpha_{\text{LB}}(\mu)$$
 ... Lower bound of " a "-coercivity constant,
 $\varepsilon_{N,M}^{k}(\mu)$... dual norm of residual,
 $\hat{\varepsilon}_{M}^{k}(\mu)$... interpolation induced error.

Output bound

$$\Delta^s_{N,M}(t^k;\mu)\equiv \left(\sup_{v\in Y}rac{\ell(v)}{\|v\|_{L^2(\Omega)}}
ight)\Delta^{u\,k}_{N,M}(\mu).$$

Problem Statement Reduced Basis Approximation *A Posteriori* Error Estimation Numerical Results

Bound Theorem

Proposition

If
$$g(u_{N,M}^k(\mu);x;\mu)\in W_{M+1}^g$$
, $1\leq k\leq K$, then $|||u^k(\mu)-u_{N,M}^k(\mu)|||\leq \Delta_{N,M}^{u\,k}(\mu), \quad \forall\mu\in\mathcal{D},\; 1\leq k\leq K.$ and

$$ert s^k(\mu) - s^k_{N,M}(\mu) ert \le \Delta^{s\,k}_{N,M}(\mu), \quad orall \mu \in \mathcal{D}, \ 1 \le k \le K.$$
for all $1 \le N \le N_{ ext{max}}, \ 1 \le M \le M_{ ext{max}}.$

Note

In general
$$g(u^k_{N,M}(\mu);x;\mu)
otin W^g_{M+1},$$
 thus $|||u^k(\mu)-u^k_{N,M}(\mu)||| \lessapprox \Delta^{u\,k}_{N,M}(\mu).$

• Admits offline-online treatment: online cost $\mathcal{O}(K(N+M)^2)$.

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Model Problem

Given
$$\mu = (\mu_1, \mu_2) \in \mathcal{D} \equiv [0.01, 10]^2$$
, evaluate $\Omega =]0, 1[^2$
 $s^k(\mu) = \int_{\Omega} u_{N,M}^k(\mu)$
where $u_{N,M}^k(\mu) \in Y$, $1 \le k \le K$, satisfies $u^0(\mu) = 0$
 $\frac{1}{\Delta t}m(u_{N,M}^k(\mu) - u_{N,M}^{k-1}(\mu), v) + a(u_{N,M}^k(\mu), v)$
 $+ \int_{\Omega} g^{nl}(u^k(\mu); x; \mu) v = b(v) \sin(2\pi t^k), \quad \forall v \in Y,$
with $g^{nl}(u^k(\mu); x; \mu) = \mu_1 \frac{e^{\mu_2 y^k(\mu)} - 1}{\mu_2}$.

Truth Approximation

- Space: $Y \subset Y^{ ext{e}} \equiv H^1_0(\Omega)$ with dimension $\mathcal{N}=2601$;
- Time: $ar{I}=(0,2]$, $\Delta t=0.01$, and thus K=200.

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Sample Results

Truth solution $y(t^k;\mu)$ at time $t^k=25\Delta t$ and

 $\mu = (0.01, 0.01)$

 $\mu=(10,10)$

 $b(v) = 100 \int_{\Omega} v \, \sin(2\pi x_1) \cos(2\pi x_2)$

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Convergence: Energy Norm

Results for sample $\Xi_{\rm test}\in \mathcal{D}$ of size 225.

- "Plateau" in curves for M fixed.
- "Knees" reflect balanced contribution of both error terms.
- Sharp bounds require conservative choice of *M*.

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Convergence: Energy Norm

N	M	$\epsilon^y_{N,M, ext{max,rel}}$	$\Delta^y_{N,M, ext{max,rel}}$	$ar{\eta}_{N,M}^y$
1	40	$3.83 \mathrm{E}{-}01$	$1.15\mathrm{E}+00$	2.44
5	60	$1.32\mathrm{E}{-}02$	$4.59 \mathrm{E}{-}02$	2.43
10	80	$9.90 \mathrm{E}{-}04$	3.41 E-03	2.10
20	100	$9.40 \mathrm{E}{-}05$	$4.16 \mathrm{E-04}$	2.77
30	120	$1.30 \mathrm{E}{-} 05$	$7.34 \mathrm{E}{-}05$	2.48
40	140	$3.36 \mathrm{E}-06$	$8.75 \mathrm{E}{-}06$	1.64

Results for sample $\Xi_{test} \in \mathcal{D}$ of size 225.

Choose N vs. M such that

 $error(EIM) \ll error(RB)$

to obtain sharp bounds.

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Convergence: Output

N	M	$\epsilon^s_{N,M, ext{max,rel}}$	$\Delta^s_{N,M, ext{max,rel}}$	$ar{\eta}^s_{N,M}$
1	40	$9.99 \mathrm{E}{-}01$	$2.49\mathrm{E}+01$	14.1
5	60	$5.35\mathrm{E}{-}03$	$1.00\mathbf{E}+00$	130
10	80	$2.57\mathrm{E}{-}04$	$7.42 \mathrm{E}{-}02$	146
20	100	$1.43 \mathrm{E}{-}05$	$9.06 \mathrm{E} - 03$	436
30	120	$5.34 \mathrm{E}{-}06$	$1.60 \mathrm{E} - 03$	307
40	140	$2.85 \mathrm{E}{-}06$	1.90 E- 04	205

Results for sample $\Xi_{\text{test}} \in \mathcal{D}$ of size 225.

- Accuracy of output bound < 1% for (N, M) = (20, 100).
- Use adjoint techniques for faster convergence.

Problem Statement Reduced Basis Approximation A Posteriori Error Estimation Numerical Results

Online Computational Times

N	M	$ \ s_{N,M}(\mu,t^k)$	$\Delta^s_{N,M}(\mu,t^k)$	$s(\mu,t^k)$
1	40	$5.42 \mathrm{E}{-}05$	$9.29 \mathrm{E} - 05$	1
5	60	$9.67 \mathrm{E}{-} 05$	$8.58 \mathrm{E} - 05$	1
10	80	$1.19 \mathrm{E-04}$	$9.37 \mathrm{E} - 05$	1
20	100	1.71 E- 04	1.05 E - 04	1
30	120	$2.42 \mathrm{E}{-}04$	$1.18 \mathrm{E} - 04$	1
40	140	$3.15 \mathrm{E-04}$	1.35 E-04	1

Average CPU times for sample $\Xi_{test} \in \mathcal{D}$ of size 225.

- ► Computational savings O(10³) for Δ^s_{N,M,max,rel} < 1%.</p>
- But offline stage much more expensive than for linear case.

Model Problem Numerical Results

Problem Statement [Gre12b]

Reaction-diffusion equation

$$\frac{\partial \mathbf{y}(\mathbf{x},\mathbf{t};\boldsymbol{\mu})}{\partial t} = \nabla(D(\boldsymbol{\mu})\mathbf{y}(x,t;\boldsymbol{\mu})) + \mathbf{f}(\mathbf{y}(x,t;\boldsymbol{\mu});\boldsymbol{\mu})$$

Specific Example: self-ignition of coal stockpile

$$\begin{array}{ll} \frac{\partial T(x,t)}{\partial t} &=& \nabla^2 T(x,t) + \beta \, \Phi^2 \left(c(x,t) + 1 \right) e^{-\gamma/(T(x,t)+1)}, \\ \frac{\partial c(x,t)}{\partial t} &=& \operatorname{Le} \nabla^2 c(x,t) - \Phi^2 \left(c(x,t) + 1 \right) e^{-\gamma/(T(x,t)+1)}, \end{array}$$

where

- γ : Arrhenius number,
- $oldsymbol{eta}$: Prater temperature,
- \mathbf{Le} : Lewis number,
- Φ : Thiele modulus.

Model Problem Numerical Results

Problem Statement

We consider

- ▶ $\beta = 4.287$,
- ▶ Le = 0.233,
- $\Phi^2=70000$ fixed, and

• $\mu\equiv\gamma\in[12,12.6];$

 \Rightarrow exhibits very rich dynamic behavior for this parameter range.

Truth Approximation:

- FE in space with $\mathcal{N}=800$,
- FD in time with $\Delta t = 0.001$, K = 6000.

Note

Nonlinearity not monotonic: a posterior error bounds not valid.

Model Problem Numerical Results

Sample Results

Model Problem Numerical Results

Sample Results

Model Problem Numerical Results

Sample Results

Model Problem Numerical Results

Reduced Basis Approximation

RB:
$$N_T = 20, N_c = 22, M = 44.$$

Truth and RB Approximation for $\mu=12.6$

Temperature

Concentration

Model Problem Numerical Results

References I

- [BMNP04] Maxime Barrault, Yvon Maday, Ngoc Cuong Nguyen, and Anthony T. Patera. An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique, 339(9):667 – 672, 2004.
- [EGP10] Jens L. Eftang, Martin A. Grepl, and Anthony T. Patera. A posteriori error bounds for the empirical interpolation method. *Comptes Rendus Mathematique*, 348:575–579, 2010.
- [GMNP07] Martin A. Grepl, Yvon Maday, Ngoc C. Nguyen, and Anthony T. Patera. Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: Mathematical Modelling and Numerical Analysis, 41(3):575-605, 2007.
- [Gre05] Martin A. Grepl. Reduced-Basis Approximation and A Posteriori Error Estimation for Parabolic Partial Differential Equations. PhD thesis, Massachusetts Institute of Technology, June 2005.
- [Gre12a] Martin A. Grepl. Certified reduced basis methods for nonaffine linear time-varying and nonlinear parabolic partial differential equations. M3AS: Mathematical Models and Methods in Applied Sciences, 22(3):40, 2012.
- [Gre12b] Martin A. Grepl. Model order reduction of parametrized nonlinear reaction-diffusion systems. Computers and Chemical Engineering, 43(0):33 – 44, 2012.
- [KGV12] Dirk Klindworth, Martin A. Grepl, and Georg Vossen. Certified reduced basis methods for parametrized parabolic partial differential equations with non-affine source terms. Computer Methods in Applied Mechanics and Engineering, 209-212(0):144-155, 2012.

Model Problem Numerical Results

References II

- [MNPP07] Yvon Maday, Ngoc Cuong Nguyen, Anthony T. Patera, and George S.H. Pau. A general, multipurpose interpolation procedure: the magic points. Communications on Pure and Applied Analysis (CPAA), 8:383 – 404, 2007.
- [Ngu07] N. C. Nguyen. A posteriori error estimation and basis adaptivity for reduced-basis approximation of nonaffine-parametrized linear elliptic partial differential equations. *Journal* of Computational Physics, 227:983-1006, December 2007.
- [NVP05] N.C. Nguyen, Karen Veroy, and Anthony T. Patera. Certified real-time solution of parametrized partial differential equations. In Sidney Yip, editor, Handbook of Materials Modeling, chapter 4.15, pages 1523–1558. Springer, 2005. Handbook of Materials Modeling.
- [VP05] K. Veroy and A. T. Patera. Certifed real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. International Journal for Numerical Methods in Fluids, 47:773–788, 2005.
- [VPP03] Karen Veroy, Christophe Prud'homme, and Anthony T. Patera. Reduced-basis approximation of the viscous burgers equation: rigorous a posteriori error bounds. Comptes Rendus Mathematique, 337(9):619–624, 2003.