
Documentation for rbMIT Software:

I. Reduced Basis (RB) for Dummies

D.B.P. Huynh, N.C. Nguyen, A.T. Patera, G. Rozza

c© Massachusetts Institute of Technology
See copyright usage notice and license at

http://augustine.mit.edu/rbMIT SystemLicense.htm.

February 24, 2009

1 Directory Structure and “Problem Management”

You have already downloaded the rbMIT Part II and IV DATE folder from
our website (to your MATLAB R© directory). It contains the documentation
you are reading, the rbMIT Library and rbMIT Aux folders that contain the
rbMIT software, a folder rbUfiles that contain rbU probname.m files (see
below), and the license agreement. All the RB activity will take place in the
rbMIT directory. Before doing anything, first launch the function

>>addrbMITpath.m
in the rbMIT directory.

For each new problem you wish to create, choose a unique problem name
probname and create a new (sub)folder named probname in the rbMIT di-
rectory. For example, for the problem named probname = ‘fin’, the folder
should be named fin. (This fin folder is in fact included in the rbMIT
directory that you have downloaded.)

In the probname folder, create the “rbU”.m file rbU probname.m. Easi-
est is to cut and paste an rbU blah.m file provided in the rbUfiles folder,
change the name of the file to rbU probname.m, and then modify appropri-
ately according to Section 4. (For the problem named probname = ‘fin’
the rbU fin.m file is included in the rbUfiles folder but also directly in
the fin folder provided.) Once the rbU file is ready, you can do the Offline
execution (Section 2) and Online execution (Section 3).

Note that there are really two names associated with a problem: the
name of the problem, probname, and the name of the scalar output you wish
to evaluate, outputname. In the course of Offline execution (see Section 2),
the software will automatically generate a (sub)folder named outputname
in the folder probname (within the directory rbMIT). You may on occasion
need to access data in the outputname folder; however, make sure you are

always in the probname folder when you do the Offline and Online execution
for the problem named probname.

We suggest that you first ‘do’ a few problems for which we provide
rbU files: to begin do the probname = ‘fin’ problem with outputname
= ‘flux’ directly from the fin folder you will find in the rbMIT directory
that you have downloaded; then do a few problems from the documenta-
tion (for example, create the folder named tailpiano in the rbMIT direc-
tory, then copy the rbU tailpiano.m file from the rbUfiles folder to the
tailpiano folder). In each case, once you have the probname folder and
rbU probname.m file set up, proceed to Sections 2 and 3 below.

To create new rbU files for new problems, see Section 4.

2 Offline Execution

To run the problem named probname, put yourself in the probname folder
(which in turn must be in the rbMIT directory, as explained above). Then
at the MATLAB R© command prompt >> type rbU probname; i.e.,

>>rbU probname
and sit back and wait.

Note in the rbU file you can specify plotdemo = 1 (lets you see what’s
going on, pausing often for you to hit a key and continue) or plotdemo = 0
(does everything secretively); in many of the rbU files provided in Section 4
we have set plotdemo = 1, so you will need to change this if you prefer the
non-verbose form.

In the Offline stage there is a fair amount of computing, which for real
problems could easily take not only minutes but hours. To facilitate fast and
less painful learning, we have set the default value of femOPT.maxsize to 250
(related to the dimension of the underlying FE approximation); however, for
actual “production” calculations, the user will undoubtedly wish to increase
femOPT.maxsize in order to obtain higher FE resolution. The Offline stage
will generate a bunch of .m and .mat files, the contents of which you, as a
Dummy, are not obligated to understand.

3 Online Execution

3.1 Output Evaluation

The Online stage is your reward: for the problem named probname, you can
evaluate the output named outputname extremely quickly for different val-

2

ues of the parameter [mu1, mu2,...,muP] (for P parameters) in the input
parameter domain defined by

[mu1 min, mu1 max] × [mu2 min,mu2 max] × [muP min,muP max].
Note the user sets the parameter ranges in the rbU file: mu min = [mu1 min,...,muP min]
and mu max = [mu1 max,...,muP max] (see Section 4.1.1(iv)).

Make sure you are positioned in the probname folder (not in the outputname
subfolder) before continuing. In the Online execution the data are loaded as
global variables in the workspace to improve efficiency during computation.
If you want to delete these variables just do a clear all.

Now do
>>[sN, DeltaN] = Online RB(‘probname’,[mu1,mu2,...,muP],‘outputname’)

for example, for the problem named probname = ‘fin’ with output named
outputname = ‘flux’, do

>>[sN, DeltaN] = Online RB(‘fin’,[.1,3],‘flux’)
Note [mu1,mu2,...,muP] is the value of the parameter for which you wish to
evaluate the output: this parameter value must be in the parameter domain
as specified in the rbU file. Here sN is the RB prediction for the output, and
DeltaN is a rigorous a posteriori error bound for the difference between the
RB output prediction and finite element (FE) output prediction.

We emphasize that the RB approximation is an approximation to an FE
approximation; the mesh for the latter is printed out if plotdemo = 1. You
can change the FE resolution (either automatic adaptive, or a selected num-
ber of regular refinements) by setting the flag femOPT.maxsize (default =
250) and femOPT.refine (default is ‘adaptive’, option is ‘subdivision’)
in the rbU file, as described in Section 4. The better the FE approximation,
the more expensive the Offline stage; however, the computational time for
the Online stage is independent of the resolution of the FE approximation.

3.2 Visualization

The visualization is not as quick as the Online evaluation. In particular, the
computational time for visualization is not independent of the resolution
of the FE approximation; however, the visualization is still typically much
faster than direct FE solution/rendering.

In general, you should remain exclusively in the probname folder during
visualization. Also in this case the data are loaded as global variables to
improve efficiency and avoid reloading many times. To clear the workspace
just do a clear all.

3

To visualize the RB approximation to the FE field for the problem named
probname for the parameter value [mu1,mu2,...,muP] (which must be in
the parameter domain), just do

>>Vis RB(‘probname’,[mu1,mu2,...,muP])
which will present the geometry (which can be parameter-dependent), a
rendering of the field, and a rigorous a posteriori bound for the error in the
RB field relative to the FE field. (The error is an integral of the error2 and
error in the derivative2 over the domain.)

4 The rbU File

There are several components to the rbU file. We have already discussed
probname, outputname, plotdemo, and femOPT. These overall descriptors
must go at the beginning of the rbU file. For example, for our fin problem

probname = ‘fin’
outputname = ‘flux’
plotdemo = 1
femOPT.refine = ‘adaptive’

(Note if the user does not set the plotdemo or refinement flag, the software
will choose for the user. However, probname and outputname are required
as the first lines of the rbU file.)

We now turn to the more technical inputs. We first consider the case of
a scalar equation, then the case of a vector equation (linear elasticity).

4.1 Scalar Equation

There are two supported problem types for the scalar problems:

probtype = ‘TH’: for normal case;

probtype = ‘TH2’: for axisymmetric case.

The default value of probtype is probtype = ‘TH’.

4.1.1 Straight Edges

We shall first describe the case with straight edges, using probname = ‘fin’
as our example (probname = ‘fin’, outputname = ‘flux’, plotdemo = 0
or 1, femOPT.refine = ‘adaptive’).

4

(i) Geometry

There is a set of points

points = ‘[1/2,0; 1/2, mu2/2; 1/2, mu2; -1/2, mu2; -1/2,
mu2/2; -1/2, 0]’;

note only the parts between the ‘[and]’ will change from problem to
problem. Note the points can be constants — better to use fractions
rather than decimals in order to speed up the symbolic processing — or
standard functions of mu1,...,muP expressed in the usual MATLAB R©
lexicon.

There is a set of edges

edge = [1,2;2,3;3,4;4,5;5,6;6,1];

(no quotes this time). Each pair of integers refers to indices of the
points array: so the 1,2 pair in edge defines a straight line that con-
nects (1/2,0) (the first point in the points array) and (1/2,mu2/2)
(the second point in the points array); similarly, the 6,1 pair defines
a straight line that connects (-1/2,0) (the sixth point in the points
array) and (1/2,0) (the first point in the points array).

There are a number of geometry{ } cell arrays (note the { } brackets
rather than () parentheses). Each geometry{ } is a list of edges:

geometry{1} = [1,2,3,4,5,6];

in our example there is only one geometry array. The above state-
ment defines a boundary: we start with edge 1, then edge 2 (which
must share one endpoint with edge 1), then edge 3, . . . , until we
arrive at edge 6 (which must share an endpoint with edge 1 — form-
ing a complete “cycle”). From this data we infer what we shall call
ProtoRegion{1}: the interior (defined in the obvious way) of the
boundary. (The user does not input the ProtoRegions; the ProtoRegions
are deduced from the user-input geometry edge lists.)

Each geometry{k} will define a ProtoRegion{k}. We need different
ProtoRegions (and hence different geometry) in order to be able to
define different PDE coefficient/physical properties in different parts of
the domain. The intersection of ProtoRegion{k} with ProtoRegion{j}
can be either null, all of ProtoRegion{k} (in which case we say that
ProtoRegion{k} is inside ProtoRegion{j}, or all of ProtoRegion{j}
(in which case we say that ProtoRegion{j} in inside ProtoRegion{k}).
There is a gflag array,

5

gflag = [1];

if gflag(k) = 1 then the ProtoRegion{k} corresponding to geometry{k}
(here k = 1 since for the fin there is only one geometry list) is part of
the final domain (i.e., presence of “material”); if gflag(k) = 0 then
the ProtoRegion{k} corresponding to geometry{k} is a hole (i.e., ab-
sence of “material”).

We now construct the final domain on which the PDE is defined. In
particular, for each ProtoRegion{k} that is not a hole we subtract
all ProtoRegions that are either (a) inside ProtoRegion{k} (as de-
fined above), or (b) a hole (as indicated by gflag). The resulting
ProtoRegion{k} — with nested ProtoRegions and holes removed —
is now denoted Region{k}. (Note if ProtoRegion{j} is a hole, then
it no longer plays any role in the rbU file: the j index is no longer rel-
evant. Thus, if there are three geometry lists, and gflag = [1,0,1],
Region{1} (derived from ProtoRegion{1}), and Region{3} (derived
from ProtoRegion{3}) define the final problem domain.)

(ii) PDE Coefficients

In each Region{k}, we solve

− ∂

∂xi

(
c{k}ij

∂u

∂xj

)
+ Ui{k}

∂u

∂xi
+ r{k}u = f{k} in Region{k}

where u is the field variable, x = (x 1,x 2) is the spatial coordinate,
c{k} is a 2 × 2 SPD tensor diffusivity, U{k} = (U 1,U 2) is a veloc-
ity, r{k} is a non-negative scalar, and f{k} is a scalar. All of these
quantities can be polynomial functions of x and may depend on the
parameter [mu1,mu2,...,muP].

These quantities are input in the rbU file via the kappa{k} (for Region{k})
cell array. The (1,1),(2,1),(2,1),(2,2) entries of kappa{k} are
c{k}; the (3,1),(3,2) entries of kappa{k} are U{k}; and the (3,3)
entry of kappa{k} is r{k}. The entries for kappa{k} for k correspond-
ing to “hole” ProtoRegions should be set to zero.

For the fin example,

kappa{1} = ‘[1 0 0; 0 1 0; 0 0 0]’;

this means that in our single region (the entire domain), the equation
is

−∇2u = f{1} in Region{1}

6

corresponding to the simple Laplacian.

The f{k} are specified via the fareaload input in rbU. In particular,
fareaload consists of (Region number k, f{k}) pairs; the user need
only include those pairs for which f{k} is non-zero. For the fin prob-
lem, f{1} = 0, and hence no fareaload input is required. Values of
f{k} may depends on the parameter [mu1,mu2,...,muP] and can be
polynomial functions of x. For example, f{1} = mu1*x + mu2*x*y^2.

Remark. Please be aware that if Matlab is calling Mupad instead of
Maple, for its higher versions, Mupad cannot convert expressions other
than ∗, /,+,−, so if we declare points = ’[1./mu1,0]’ there will be
an error (‘[1.0/mu1,0]’ is fine) and also do not use math expression
containing ./, .∗ in the geometry declarations (points, load, kappa,
etc).

Pleease try to avoid floating point number (real number) if you can,
instead using fractional number (if we have 0.3, we better express it as
3/10). This helps to improve the speed in the computing procedures
in the symbolic pre-processor.

(iii) Boundary Conditions

Continuity of the field and the flux (the normal component of c{k} ij
du/dx j) is automatically imposed on all internal interfaces — defined
as boundaries between Regions. We now turn to boundary conditions.

Dirichlet conditions are specified via the dirichlet input in rbU. In
particular, dirichlet consists of (edge number, value of the field on
edge number) pairs, where the value of the field on edge number must
be a constant independent of parameter [mu1,...,muP] and x. Note
the edge numbers must correspond to edges on the boundary of the
domain. Note also that if there are no (inhomogeneous or homoge-
neous) Dirichlet boundary conditions then the dirichlet input may
be absent from the rbU file.

For the fin problem,

dirichlet = ‘[6,1]’;

which indicates that on edge 6 (which from the edge array and points
list we see corresponds to the base of the fin) we impose Dirichlet
conditions u = 1.

Turning now to natural boundary conditions, homogeneous Neumann
(flux) boundary conditions require no action. For inhomogeneous Neu-
mann conditions or Robin conditions, we impose the general boundary

7

conditions
ni c{k}ij

∂u

∂x j
+ g1(u− g2) = g3 ,

where n i is the unit normal, g1 is the Robin coefficient (possibly
zero), g2 is the “sink” field value (possibly zero), and g3 is the flux
(possibly zero). The coefficients g1, g2, and g3 may all be polynomial
functions of x and/or involve the parameter [mu1,...,muP].

The coefficients g1, g2, g3 are specified via the nload input in the
rbU file. In particular, nload consists of (edge number, value of g1
on edge number, value of g2 on edge number, value of g3 on edge
number) 4-tuples. (Again, if g1 = g2 = g3 = 0 on an edge, this edge
need not be listed in nload.) Note the edge numbers must correspond
to edges on the boundary of the domain. Note also that if there are
no inhomogeneous Neumann or Robin boundary conditions, then the
nload input may be absent from the rbU file.

For the fin problem,

nload = ‘[1,mu1,0,0;2,mu1,0,0;4,mu1,0,0;5,mu1,0,0]’

which indicates that on edges 1, 2, 4, and 5 (which from the edge
array and points list we see corresponds to the two sides of the fin)
we impose Robin conditions with coefficient g1 = mu1. (Note on edge
3 we impose homogeneous Neumann conditions, which are automatic;
thus edge 3 does not appear in either the dirichlet or nload rbU
inputs.)

(iv) The Parameter Domain

The key input is the vector mu min = [mu1 min,mu2 min,...,muP min]
and the vector mu max = [mu1 max,mu2 max,...,muP max]: the re-
duced basis is constructed for, and can be queried for, values of mu1
between mu1 min and mu1 max, values of mu2 between mu2 min and
mu2 max,..., and values of muP between muP min, muP max. (Note
that P, the number of parameters, is deduced from the input file by
the length of the mu min and mu max vectors.)

For the fin problem,

mu min = [0.02,2];
mu max = [0.5,8];

which means that 0.02 ≤ mu1 ≤ 0.5 (this is the Robin coefficient)
and 2 ≤ mu2 ≤ 8 (this is the length of the fin).

8

In addition, there are two more technical inputs related to the geom-
etry transformations (muref) and a posteriori error bounds (mu bar).
For Dummies, it is perhaps easiest to set both muref = mu bar =
1/2(mu min + mu max) for each component of the P -vector; in fact,
muref and mu bar can be different, and can be any parameter value
in the parameter domain. For the fin problem,

muref = [0.1,4];
mu bar = [0.1,4];

which is in fact the log-mean for first parameter (often a good choice
for property and boundary condition parameters) and the arithmetic
mean for the second parameter (often a good choice for geometric
parameters).

(v) Outputs

For outputs we may consider the integral of the field over selected
regions or over selected boundary edges. To specify an output over
selected regions we set the oareaload input in rbU. In particular,
oareaload consists of (Region number k, factor to be included in the
integral over Region{k}) pairs; the user need only include those pairs
for which the factor — the term in front of the integral — is non-zero.
The factor may depend on the parameter and on x coordinates.

To specify an output over selected edges we set the oload input in
rbU. In particular, oload consists of (edge number, factor included in
the integral over edge number) pairs; the user need only include those
pairs for which the factor — the term to be included in the integral
— is non-zero. All edges must be boundary edges. The factor to be
included in the integral may be a polynomial function of x and involve
the parameter.

Finally, we may ask for the integral of the flux, n i c{k} ij du/dx j,
over selected boundary edges. To specify this output we set the dLIFT
input in rbU. In particular, dLIFT consists of (edge number, prefactor
to integral of flux over edge number) pairs; the user need only include
those pairs for which the prefactor — the term in front of the integral
— is non-zero. All edges must also appear in the dirichlet rbU input
list (corresponding to edges on which we impose Dirichlet boundary
conditions on u). The prefactor may depend on the parameter but not
on x.

We note that an output must be one of the three options above; com-

9

binations are not allowed. (Multiple outputs are possible . . . but not
for Dummies.) For the fin problem, we set

dLIFT = ‘[6,1]’;

which indicates that the output is the integral of the flux over edge 6
(the fin base) multiplied by prefactor 1.

(vi) Axisymmetric Model

The axisymmetric problem is specified by the probtype input (probtype
= ‘TH2’) in the rbU. The descriptions (geometry, coefficients, bound-
ary conditions) for axisymmetric models are similar to that of normal
models. However, there are some special requirements:

– The axis of symmetry is the x 2 axis.

– The x 1 and x 2 directions represent the radial and axial direc-
tion, respectively.

– Negative x 1-coordinates of points are not permitted.

For axisymmetric model, outputs that are specified by oareaload and
nload/dLIFT now correspond to integral over volumes (for oareaload)
and surfaces (for nload/dLIFT) instead of regions or edges. Specifi-
cally, oareaload output corresponds to integral of the field over a 1-
radian segment of the volume, and nload/dLIFT output corresponds
to integral of the field over a 1-radian segment of the surface. To
get the value integrated over the full volume/surface, the user must
multiply the obtained results by 2*pi.

(vii) “Tailer”

All rbU files end with the same tailer, which launches an irreversible
sequence of events that will either successfully terminate upon com-
pletion of the Offline stage — or confuse MATLAB R©, erase your hard
disk, and crash your computer. The tailer, to be put verbatim at the
end of every rbU file, is

%%%%%%% no user input required beyond this point
if exist(‘plotdemo’)
plotdemo = 0;
end
save rbU ;
copyfile(‘../rbMIT Aux/Step1 coer noncompliant.m’,...
...strcat(probname,‘ ’,‘Step1 coer noncompliant.m’))

10

eval(strcat(probname,‘ ’,‘Step1 coer noncompliant’))
%%%%%%%

Note that it is also often prudent to put a “clear” statement at the
very beginning of your rbU files — but NOT at the end of your rbU
file.

4.1.2 Curvy-Arc Edges

In the case in which the logical edges (point pairs) are connected by straight-
lines, the geometry description above suffices. We consider here the case in
which the point pairs are connected either by elliptical arcs or more general
parametrized curvy arcs.

We first discuss the case of elliptical arcs. Each elliptical arc is a member
of a family of elliptical arcs (this saves the user from needing to re-enter the
same curve description for many geometrically similar edges). All edges that
belong to a particular family are described by the common equation(

x1

x2

)
=

[
O1

O2

]
+

[
cosφ − sinφ
sinφ cosφ

] [
ρ1 0
0 ρ2

] [
cos t
sin t

]
where t is a parametrization of the curve. (This parametrization of course
refers to “t” and not our parameter [mu1,...,muP].) Here [O1, O2] is the
center, φ is an angle of rotation, and ρ1 and ρ2 are dilations: all of these
quantities may depend on the parameter [mu,...,muP]. Each edge that be-
longs to this family is then defined by (different) “start” and “end” values for
the parameter t. It is thus clear that these elliptical arcs correspond (appro-
priately enough) to segments of ellipses of prescribed location, orientation,
and major/minor axes.

The user provides this information through the curvedat and tarclist
inputs in the rbU file. Here (say, for two families)

curvedat = ‘[O1 for family 1, O2 for family 1, rho 1 for family 1,

rho 2 for family 1,

phi for family 1, cos(t), sin(t); O1 for family 2, O2 for

family 2,

rho 1 for family 2, rho 2 for family 2, phi for family 2,

cos(t), sin(t)]’;

note that the last two entries for each family are always (for elliptical arcs)
cos(t) and sin(t), respectively. Then tarclist is a list of (edge number,
family to which edge belongs, start value of t, end value of t) 4-tuples
for each edge which is elliptical; only edges which are actually elliptical

11

need be included in the tarclist data. Note that the points list must be
consistent with curvedat and tarclist: for the start and end values of
t, the curvedat/tarclist description of an elliptical-arc edge must agree
with the corresponding points entries. See rbU examples rbU elashole,
rbU elascoat, rbU crack2, rbU cantilever2, and rbU elas4 for various
examples.

We note that there are some restrictions on boundary conditions and
outputs for elliptical-arc edges. We may impose (constant) homogeneous or
inhomogeneous Dirichlet conditions and homogeneous Neumann (flux) con-
ditions on any straight or elliptical-arc edge; however, we may only impose
inhomogeneous Neumann conditions and Robin conditions only on straight
or circular-arc edges (not general elliptical-arc edges). Similarly, we may
consider “oload” outputs only for straight or circular-arc edges (not general
elliptical-arc edges).

Finally, we consider the case of general “curvy”-arc edges. In fact, the
treatment is identical to elliptical-arc edges, except that cos(t), sin(t) is
now replaced by general functions h1(t), h2(t) selected by the user. See
rbU tailpiano as an example.

4.2 Vector Case

We shall describe only Problem type, PDE Coefficients, Boundary Condi-
tions, and Outputs in this Section; see the Scalar case for Geometry (4.1.1i),
Parameter Domain (4.1.1iv) and Tailer (4.1.1vii).

The problem type description variable — probtype — is required are
must be specified for vector problems. Currently there are five supported
problem types:

probtype = ‘LE1’: for isotropic plane strain;

probtype = ‘LE2’: for isotropic plane stress;

probtype = ‘LE3’: for orthotropic plane strain;

probtype = ‘LE4’: for orthotropic plane stress;

probtype = ‘LE5’: for axisymmetric elasticity.

There is no default value for probtype. The user must specify the problem
type, i.e., set the probtype variable to the correct value at the beginning of
the rbU file (just after probname).

12

(i) PDE Coefficients

In each Region{k}, we solve the linear elasticity PDE

− ∂

∂xj

(
Cijkl{k}

∂uk

∂xl

)
+ri{k}δijuj = bi{k}, i = 1, 2, in Region{k} ,

where u is the (displacement) field variable, u = (u 1,u 2), r 1, r 2,
are non-negative scalars, b 1, b 2 are scalars, and C ijkl is the effec-
tive elasticity tensor corresponding to the problem type.

The tensor C ijkl{k} depends on the material properties as pre-
scribed by matprop{k} in the rbU file. The order and descriptions
of matprop{k} depends on the problem type and is given below:

– probtype = ‘LE1’, ‘LE2’, and ‘LE5’: E, nu, r 1, r 2

– probtype = ‘LE3’: E 11, E 22, E 33, nu 12, nu 23, nu 31,
G 12, r 1, r 2

– probtype = ‘LE4’: E 11, E 22, nu 12, G 12, r 1, r 2

where E denotes the Young’s modulus, nu denotes the Poisson ratio,
and G denote the shear modulus. Unspecified r 1 and r 2 values will
automatically set r 1=0 and r 2 = 0 for the particular region. For
example, for

probtype = ‘LE3’;
matprop1 = ‘[1.0, 1.1, 1.2, 0.3, 0.2, 0.1, 1]’;

corresponds to a orthotropic plane strain linear elasticity problem
with E 11 = 1.0, E 22 = 1.1, E 33 = 1.2, nu 12 = 0.3, nu 23 =
0.2, nu 31 = 0.1, G 12 = 1, r 1 = 0 and r 2 = 0. For probtype
= ‘LE1’ and probtype = ‘LE2’, the entries of matprop{k} may be
polynomial functions of x and involve the parameter. However, for
probtype = ‘LE3’ and probtype = ‘LE4’, the entries of matprop{k}
may depend on the parameter but not on x.

The b 1 and b 2 values are specified via the fareaload input. In par-
ticular, fareaload consists of (Region number k, b 1, b 2) 3-tuples;
as in the Scalar case, the user need only to include the non-zero b 1/b 2
pairs. Note b 1 and b 2 may be polynomial functions of x and involve
the parameter.

(ii) Boundary Conditions

The Dirichlet conditions are specified via the dirichlet input. Dirich-
let consists of (edge number, label, value of the field on edge number),

13

where label can be either “x” or “y” and specifies the component of
the field to be constrained. For example,

dirichlet = ‘[1, x, 0; 1, y, 0; 2, x, 0]’

means that we impose u 1 = u 2 = 0 on the first edge and u 1 = 0
on the second edge. As in the Scalar case, the edge numbers must
correspond to edges on the boundary of the domain, and the Dirichlet
values must be constants.

Homogeneous Neumann boundary conditions require no input. For in-
homogeous Neumann conditions, we adopt the input form from nload
(edge, f 1, f 2), which corresponds to coefficients of

Cijkl
∂uk

∂xl
nj = f1 ei, i = 1, 2 ,

Cijkl
∂uk

∂xl
nj = f2 ni, i = 1, 2 ;

here n and e correspond to the normal and tangential vectors on the
defined edge. We adopt the convection that the normal vector is the
vector pointing outward the geometry, and the order of e and n follows
the counter-clockwise fashion: n × e > 0. Here f 1 and f 2 correspond
to the magnitude of the “load” in the normal and tangential directions
of the edge, they can be polynomial functions of x and involve the
parameter. For example,

nload = ‘[2, 1, 0; 3, 1, 0; 4, 1, 0]’

will specify f 1 = 1 (pressure) on edges 2, 3, and 4. Note we permit
f 1 6= 0, f 2 6= 0 only on straight edges or circular-arc edges.

(iii) Output

For output we may consider the integral of components of the field over
selected regions or over selected boundary edges. To specify an output
over selected regions we set the oareaload input in rbU. In particular,
oareaload consists of (Region number k, factor to be included in the
integral of component u 1 over Region{k}, factor to be included in
the integral of component u 2 over Region{k}) 3-tuples. As before,
the user need only include those 3-tuples for which at least one of the
factors is non-zero. These factors may be polynomial functions of x
and involve the parameter.

To specify an output over selected edges we set the oload input in rbU.
In particular, oload consists of (edge number, factor to be included

14

in the integral of the normal component of the solution field over the
edge number, factor to be included in the integral of the tangential
component of the solution field over the edge number) 3-tuples; the
user needs only include those 3-tuples for which a factor — the term
to be incorporated in the integral — is non-zero. All edges must be
boundary edges. The factor may be a polynomial function of x and
involve the parameter.

Finally, we may ask for the integral of the stress Cijkl(∂uk/∂xl)nj ,
over selected boundary edges. To specify this output we set the dLIFT
input in rbU. In particular, dLIFT consists of (edge number, prefactor
to integral of first component of stress over edge number, prefactor
to integral of the second component of stress over edge number) 3-
tuples; the user need only include those 3-tuples for which a prefactor
— the term in front of the integral — is non-zero. All edges must also
appear in the dirichlet rbU input list (corresponding to edges on
which we impose Dirichlet boundary conditions on u). The prefactor
may depend on the parameter but not on x.

(iv) Axisymmetric Model

The convention for the axisymmetric case (probtype = ‘LE5’) is as
the same as in the scalar case. There are some more requirements
for this problem type: Homogeneous Neumann conditions on the x 1-
coordinate axis are required, and dLIFT admits just one (axial) com-
ponent; i.e., in the form dLIFT = ‘[edge, 0, prefactor]’.

We note that an output must be one of the three options above; com-
binations are not allowed. (Multiple outputs are possible . . . but not for
Dummies.)

5 rbU Files

Here is a list of rbU tutorial files provided as examples. These files also
appear separately (for easy copying) in the rbU files folder.

rbU fin.m

clear;

probname = ’fin’

15

% A thermal fin problem: illustrates inhomogeneous Dirichlet conditions,
% Robin conditions, and a flux output.
plotdemo = 1;
points = ’[1/2,0; 1/2, mu2/2; 1/2, mu2; -1/2, mu2; -1/2, mu2/2; -1/2, 0]’;
% mu2 is the length of the fin
edge = [1,2;2,3;3,4;4,5;5,6;6,1];
geometry{1} = [1,2,3,4,5,6];
gflag = [1];
kappa{1} = ’[1 0 0; 0 1 0; 0 0 0]’;
muref = [.1,4];
mu_min = [.02,2];
mu_max = [0.5,8];
mu_bar = [.1,4];
nload = ’[1,mu1,0,0;2,mu1,0,0;4,mu1,0,0;5,mu1,0,0]’;
% imposes kappa du/dn + c1*(u - c2) = c3; here c1 = mu1 is the Biot number
dirichlet = ’[6,1]’;
% unity temperature at the fin base

outputname = ’flux’
dLIFT = ’[6,1]’;
% requests the integrated flux (with prefactor ’1’) over edge 6 --- the fin base
% Note: in limit of mu1 (Biot) tends to zero, output should be
% sqrt(2*mu1)*tanh(mu2* sqrt(2*mu1));
% for all mu1, this analytical expression should be an upper bound
% for the actual output.

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU TBiso.m

clear;

probname = ’TBiso’

16

%This problem describes a Thermal Block made up by 3x3 cells with 9
%(mu1-mu9) variable isotropic conductivity coefficients (geometry is fixed)

points = ’[0,0;0.5,0;1.0,0;1.5,0;0,0.5;0.5,0.5;1.0,0.5;1.5,0.5;0,1.0;...
0.5,1.0;1.0,1.0;1.5,1.0;0,1.5;0.5,1.5;1.0,1.5;1.5,1.5]’;
edge = [1,2;2,3;3,4;5,6;6,7;7,8;9,10;10,11;11,12;13,14;14,15;15,16;1,5;2,6;...

3,7;4,8;5,9;6,10;7,11;8,12;9,13;10,14;11,15;12,16];
geometry{1} = [1,14,4,13];
geometry{2} = [2,15,5,14];
geometry{3} = [3,16,6,15];
geometry{4} = [4,18,7,17];
geometry{5} = [5,19,8,18];
geometry{6} = [6,20,9,19];
geometry{7} = [7,22,10,21];
geometry{8} = [8,23,11,22];
geometry{9} = [9,24,12,23];
gflag = [1,1,1,1,1,1,1,1,1];

% Laplacian (steady heat conduction)
kappa{1} = ’[mu1, 0,0; 0, mu1, 0; 0, 0, 0]’;
kappa{2} = ’[mu2, 0,0; 0, mu2, 0; 0, 0, 0]’;
kappa{3} = ’[mu3, 0,0; 0, mu3, 0; 0, 0, 0]’;
kappa{4} = ’[mu4, 0,0; 0, mu4, 0; 0, 0, 0]’;
kappa{5} = ’[mu5, 0,0; 0, mu5, 0; 0, 0, 0]’;
kappa{6} = ’[mu6, 0,0; 0, mu6, 0; 0, 0, 0]’;
kappa{7} = ’[mu7, 0,0; 0, mu7, 0; 0, 0, 0]’;
kappa{8} = ’[mu8, 0,0; 0, mu8, 0; 0, 0, 0]’;
kappa{9} = ’[mu9, 0,0; 0, mu9, 0; 0, 0, 0]’;
%top side has Dirichet BC
dirichlet = ’[10,0;11,0;12,0]’;
%botton side has Neumann non-homogeneous BC, other sides are Neumann
%homogeneous
nload = ’[1, 0, 0, 1; 2, 0, 0, 1;3,0,0,1]’;
muref = [0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1];
mu_min = [0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1];
mu_max = [10,10,10,10,10,10,10,10,10];
mu_bar = [0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1];

% block below for each output (1 output only for dummies)

17

% The output is the averag etemperature on the bottom side.

outputname = ’average’
oload = ’[1,1;2,1;3,1]’;

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU TBaniso.m

clear;

probname = ’TBaniso’

%This problem describes a Thermal Block made up by 3x3 cells with 9
%variable anisotropic conductivity coefficients (geometry is fixed).

points = ’[0,0;0.5,0;1.0,0;1.5,0;0,0.5;0.5,0.5;1.0,0.5;1.5,0.5;0,1.0;...
0.5,1.0;1.0,1.0;1.5,1.0;0,1.5;0.5,1.5;1.0,1.5;1.5,1.5]’;
edge = [1,2;2,3;3,4;5,6;6,7;7,8;9,10;10,11;11,12;13,14;14,15;..

15,16;1,5;2,6;3,7;4,8;5,9;6,10;7,11;8,12;9,13;10,14;11,15;12,16];
geometry{1} = [1,14,4,13];
geometry{2} = [2,15,5,14];
geometry{3} = [3,16,6,15];
geometry{4} = [4,18,7,17];
geometry{5} = [5,19,8,18];
geometry{6} = [6,20,9,19];
geometry{7} = [7,22,10,21];
geometry{8} = [8,23,11,22];
geometry{9} = [9,24,12,23];
gflag = [1,1,1,1,1,1,1,1,1];
% Laplacian and mixed terms....the operator is du/dx*dv/dx + du/dy*dv/dy
% -mu*du/dx*dv/dy -mudu/dy*dv/dx.....

18

kappa{1} = ’[1, -mu1, 0; -mu1, 1, 0; 0, 0, 0]’;
kappa{2} = ’[1, -mu2, 0; -mu2, 1, 0; 0, 0, 0]’;
kappa{3} = ’[1, -mu3, 0; -mu3, 1, 0; 0, 0, 0]’;
kappa{4} = ’[1, -mu4, 0; -mu4, 1, 0; 0, 0, 0]’;
kappa{5} = ’[1, -mu5, 0; -mu5, 1, 0; 0, 0, 0]’;
kappa{6} = ’[1, -mu6, 0; -mu6, 1, 0; 0, 0, 0]’;
kappa{7} = ’[1, -mu7, 0; -mu7, 1, 0; 0, 0, 0]’;
kappa{8} = ’[1, -mu8, 0; -mu8, 1, 0; 0, 0, 0]’;
kappa{9} = ’[1, -mu9, 0; -mu9, 1, 0; 0, 0, 0]’;
%Dirichlet BC at the top
dirichlet = ’[10,0;11,0;12,0]’;
% Neumann BC at the bottom and on the other sides
nload = ’[1, 0, 0, 1; 2, 0, 0, 1;3,0,0,1]’;

muref = [0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1];
mu_min = [0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1];
mu_max = [0.7,0.7,0.7,0.7,0.7,0.7,0.7,0.7,0.7];
mu_bar = [0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1];

% block below for each output (1 output only for dummies)
%output is average temperature at the bottom (compliant output)
outputname = ’average’
oload = ’[1,1;2,1;3,1]’;

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU tailpiano.m

clear;

plotdemo = 1;

probname = ’tailpiano’
% This problem illustrates a Curvy Edge domain with Curvy Triangles. It
% also illustrates anisotropic conductivity.

19

points = ’[0,mu1;1/2,0;1,-mu1;1,-1;0,-1;0,0]’;
% mu1 is the amplitude of the cosinusoidal variation of the top boundary
edge = [1,2;2,3;3,4;4,5;5,6;6,1];
geometry{1} = [1,2,3,4,5,6];
gflag = [1];
kappa{1} = ’[1 0 0; 0, mu2, 0; 0 0 0]’;
% mu2 is the conductivity in the x_2 direction (relative to the
% conductivity in the x_1 direction)
muref = [1/3,5];
mu_min = [1/6,1];
mu_max = [1/2,25];
mu_bar = [1/3,5];
nload = ’[5,0,0,1;6,0,0,1]’;
% flux conditions on the left boundary
dirichlet = ’[3,0]’;
% zero Dirichlet conditions on the right boundary
curvedat = ’[0,0,1,mu1,0,t,cos(pi*t);1,0,1,mu1,0,t-1,cos(pi*t)]’;
% There are two families of curvy edges: the first is [0,0]’ + [1 0; 0
% mu1]*[t, cos(pi*t)]’; the second is [1,0]’ + [1 0; 0 mu1]*[t-1,
% cos(pi*t)]’.
tarclist = ’[1,1,0,1/2;2,2,1/2,1]’;
% Edge 1 is in family 1 with t varying between 0 and 1/2; Edge 2 is in
% family 2 with t varying between 1/2 and 1.

outputname = ’int’

oareaload = ’[1,1]’;
% The output is the integral of the field over the domain.
% Note in the limit that mu2 tends to infinity, the field approaches
% u(x) = \int_x1 \frac{1 + mu1}{1 + mu1 cos(\pi z)} dz and the output is then
% given by \int_01 u(x) dx.

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

20

rbU plateaddedmass.m

clear;

probname = ’plateaddedmass’
% Added mass of an infinitely thin plate: illustrates in the scalar context
% the proper way to input a crack (with inhomogeneous boundary conditions);
% also represents case in which user should comment out standard mesh
% refines and instead use adaptmesh (go to primal_pdesolution.m, near the
% top).

points = ’[0,.0001; 1,0; mu1,0; mu1,mu1; 0,mu1; 0,-.0001; mu1,-mu1; 0,-mu1]’;
% Note we exploit symmetry in x_2 and consider only half the domain;
% mu1 is the half--size of the "basin" in which the plate (of half--length
% unity) oscillates.
% To be able to input boundary conditions on the crack, we slightly
% separate the (in fact coincident) two sides of the plate in order to
% create two edges: at x_1 = 0, the two edges are separated by .0001; at
% x_1 = 1 the two edges come together.
plotdemo = 1;
edge = [1,2;2,3;3,4;4,5;5,1;6,2;3,7;7,8;8,6];
% edges 1 and 6 correspond to the two sides of the plate
geometry{1} = [1,2,3,4,5]; % the top part of the basin
geometry{2} = [6,2,7,8,9]; % the bottom part of the basin
gflag = [1,1];
kappa{1} = ’[1 0 0; 0 1 0; 0 0 0]’;
kappa{2} = ’[1 0 0; 0 1 0; 0 0 0]’;
muref = [3];
mu_min = [2];
mu_max = [5];
mu_bar = [3];
nload = ’[1,0,0,1;6,0,0,-1]’;
% corresponds to dpressure/dn = + and - unity (which corresponds to a
% normal velocity of +1)
dirichlet = ’[4,0]’;
% a free surface condition (pressure = 0)

outputname = ’pforce’

oload = ’[1,1;6,-1]’;
% corresponds to integral of pressure over plate and hence force exerted by
% fluid on plate

% in limit of mu1 tends to infinity, output should be pi/2 (analytical
% result for added mass)

21

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU advdiff.m

clear;
%
probname = ’advdiff’
probtype = ’TH’;
plotdemo = 0;
% Advection-diffusion problem with two parameters (lentgh of the channel
% and Peclet number), advection field is polynomial (=y in x direction and
% zero in y direction). Mixed Dirichlet and Neumann BC. It simulates a
% simple scalar flow.
%mu1 L
%mu2 Peclet
% a rectangular channel
points = ’[0,0;mu1,0;mu1,0.5;0,0.5]’;
edge = [1,2;2,3;3,4;4,1];
geometry{1} = [1,2,3,4];
gflag = [1];
% operator is 1/mu2*du/dx*du/dx+ 1/mu2*du/dy*du/dy + Udu/dxv + Vdu/dyv
kappa{1} = ’[1./mu2, 0, 0; 0, 1./mu2, 0; y, 0, 0]’;
muref = [1,1];
mu_min = [1,0.1];
mu_max = [1,100];
mu_bar = [1,1];
%zero Dirichlet BC on side 3 and 4
dirichlet = ’[3,0;4,0]’;
% Neumann on other side (non homogeneous on side 1 and zero on side 2)
nload = ’[1, 0, 0,1./mu2; 2, 0, 0, 0]’;

%output is compliant and it is the "concentration" at the bottom
%side where we have Neumann BC.

22

outputname = ’layer’
%oareaload = ’[1,1]’;
oload = ’[1,1]’;

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU graetz.m

clear;

probname = ’graetz’
probtype = ’TH’;
plotdemo = 0;
% Advection-diffusion problem with two parameters (lentgh of the channel
% and Peclet number), advection field is polynomial (parabolic in x direction and
% zero in y direction). Mixed Dirichlet and Neumann BC. It simulates a
% simple scalar Graezt flow (see Arpaci, "Conduction heat transfer").
%mu1 L
%mu2 Peclet
% a rectangular channel
points = ’[0,0;1,0;1+mu1,0;1+mu1,1.0;1,1.0;0,1.0]’;
edge = [1,2;2,3;3,4;4,5;5,6;6,1];
geometry{1} = [1,2,3,4,5,6];
gflag = [1];
% operator is 1/mu2*du/dx*du/dx+ 1/mu2*du/dy*du/dy + Udu/dxv + Vdu/dyv
kappa{1} = ’[1./mu2, 0, 0; 0, 1./mu2, 0; 10*y*(1.0-y), 0, 0]’;
muref = [1,1];
mu_min = [1,0.1];
mu_max = [10,100];
mu_bar = [1,1];
%zero Dirichlet BC on side 3 and 4
dirichlet = ’[1,0;2,1;4,1;5,0;6,0]’;
% Neumann on other side (non homogeneous on side 1 and zero on side 2)

23

nload = ’[3, 0, 0, 0]’;
%areaload=’[1,1]’;
%output is compliant and it is the "concentration" at the bottom
%side where we have Neumann BC.

outputname = ’average’
oareaload = ’[1,1]’;
%oload = ’[2,1]’;

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU stagnation.m

clear;

plotdemo = 0;
femOPT.refine = ’subdivision’;
femOPT.maxsize = 500;
probname = ’stagnation’

points = ’[0,0;1,0;1,1;0,1]’;
edge = [1,2;2,3;3,4;4,1];
geometry{1} = [1,2,3,4];
gflag = [1];
kappa{1} = ’[mu1, 0, 0; 0, mu1, 0; x, -y, 0]’;
muref = [1];
mu_min = [.1];
mu_max = [10.];
mu_bar = [1];
dirichlet = ’[1,0;3,1]’;

outputname = ’intsol’

oareaload = ’[1,1]’;

24

% The output is the integral of the field over the domain.

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU steadysphere.m

clear;

plotdemo = 1;

%
probname = ’steadysphere’

points = ’[1,0;3,0;3,3;0,3;0,1;mu2,0;mu2,mu2;0,mu2]’;
edge = [1,2;2,3;3,4;4,5;1,5;2,6;6,7;7,8;8,4];
geometry{1} = [1,6,7,8,9,4,5];
geometry{2} = [1,2,3,4,5];
gflag = [1,1];
kappa{1} = ’[y 0 0; 0, y, 0; 0 0 y*mu1]’;
kappa{2} = ’[y 0 0; 0, y, 0; 0 0 y*mu1]’;
muref = [1,6];
mu_min = [0,4];
mu_max = [4,8];
mu_bar = [1,6];
dirichlet = ’[5,1;7,0;8,0]’;
curvedat = ’[0,0,1,1,0,cos(pi*t),sin(pi*t)]’;
tarclist = ’[5,1,0,1/2]’;

outputname = ’flux’

dLIFT = ’[5,1]’;

25

%analytical answer for flux (without the axisymmetric 2*pi): 1 + sqrt(mu1)
%analytical expression for field: exp(-sqrt(mu1)*(r-1))/r (where r is radius)
%note the above only true in limit mu2 tends to infinity, however for mu1
%larger even small mu2 are effectively infinite

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU LEiso.m

clear all;

probname = ’LEiso’
%This problem describes an Elastic Block made up by 3x3 cells with
%variable isotropic Young’s modulus in each subdomain (geometry is fixed).

probtype = ’LE1’;
points = ’[0,0;0.5,0;1.0,0;1.5,0;0,0.5;0.5,0.5;1.0,0.5;1.5,0.5;0,1.0;...
0.5,1.0;1.0,1.0;1.5,1.0;0,1.5;0.5,1.5;1.0,1.5;1.5,1.5]’;
edge = [1,2;2,3;3,4;5,6;6,7;7,8;9,10;10,11;11,12;13,14;14,15;15,16;1,5;...

2,6;3,7;4,8;5,9;6,10;7,11;8,12;9,13;10,14;11,15;12,16];
geometry{1} = [1,14,4,13];
geometry{2} = [2,15,5,14];
geometry{3} = [3,16,6,15];
geometry{4} = [4,18,7,17];
geometry{5} = [5,19,8,18];
geometry{6} = [6,20,9,19];
geometry{7} = [7,22,10,21];
geometry{8} = [8,23,11,22];
geometry{9} = [9,24,12,23];
gflag = [1,1,1,1,1,1,1,1,1];
%parameter is Young modulus, Poisson Coefficient is fixed
matprop{1} = ’[mu1, 3/10]’;
matprop{2} = ’[mu2, 3/10]’;
matprop{3} = ’[mu3, 3/10]’;
matprop{4} = ’[mu4, 3/10]’;

26

matprop{5} = ’[mu5, 3/10]’;
matprop{6} = ’[mu6, 3/10]’;
matprop{7} = ’[mu7, 3/10]’;
matprop{8} = ’[mu8, 3/10]’;
matprop{9} = ’[mu9, 3/10]’;
% on the upper side we have zero Dirichlet condition
dirichlet = ’[10,x,0;11,x,0;12,x,0;10,y,0;11,y,0;12,y,0]’;
% on other sides we have Neumann conditions
nload = ’[1,-1,0;2,-1,0;3,-1,0]’;
muref = [0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1];
mu_min = [0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1];
mu_max = [10,10,10,10,10,10,10,10,10];
mu_bar = [1,1,1,1,1,1,1,1,1];

% block below for each output (1 output only for dummies)

%output is the displacement on the loaded side (compliant)
outputname = ’average’
oload = ’[1,-1,0;2,-1,0;3,-1,0]’;

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU LEaniso.m

clear all;

probname = ’LEaniso’
%This problem describes an Elastic Block made up by 3x3 cells with
%variable orthotropic Young modulus in each subdomain (geometry is fixed).
probtype = ’LE4’;
points = ’[0,0;0.5,0;1.0,0;1.5,0;0,0.5;0.5,0.5;1.0,0.5;1.5,0.5;0,1.0;...
0.5,1.0;1.0,1.0;1.5,1.0;0,1.5;0.5,1.5;1.0,1.5;1.5,1.5]’;
edge = [1,2;2,3;3,4;5,6;6,7;7,8;9,10;10,11;11,12;13,14;14,15;15,16;1,5;2,6;...

3,7;4,8;5,9;6,10;7,11;8,12;9,13;10,14;11,15;12,16];

27

geometry{1} = [1,14,4,13];
geometry{2} = [2,15,5,14];
geometry{3} = [3,16,6,15];
geometry{4} = [4,18,7,17];
geometry{5} = [5,19,8,18];
geometry{6} = [6,20,9,19];
geometry{7} = [7,22,10,21];
geometry{8} = [8,23,11,22];
geometry{9} = [9,24,12,23];
gflag = [1,1,1,1,1,1,1,1,1];
% Ex,Ey,\nu,G
matprop{1} = ’[mu1,mu2,3/10,1]’;
matprop{2} = ’[mu2,mu1,3/10,1]’;
matprop{3} = ’[mu3,mu4,3/10,1]’;
matprop{4} = ’[mu4,mu3,3/10,1]’;
matprop{5} = ’[mu5,mu6,3/10,1]’;
matprop{6} = ’[mu6,mu5,3/10,1]’;
matprop{7} = ’[mu1,mu2,3/10,1]’;
matprop{8} = ’[mu2,mu1,3/10,1]’;
matprop{9} = ’[mu1,mu2,3/10,1]’;
%the upper side is clamped (zero Dirichlet BC)
dirichlet = ’[10,x,0;11,x,0;12,x,0;10,y,0;11,y,0;12,y,0]’;
% other sides are under Neumann condition (loaded or free-stress)
nload = ’[1,-1,0;2,-1,0;3,-1,0]’;
muref = [1,1,1,1,1,1,1,1,1];
mu_min = [1,1,1,1,1,1,1,1,1];
mu_max = [4,4,4,4,4,4,4,4,4];
mu_bar = [1,1,1,1,1,1,1,1,1];

% block below for each output (1 output only for dummies)
%average displacement on the loaded side (compliant)
outputname = ’average’
oload = ’[1,-1,0;2,-1,0;3,-1,0]’;

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

28

rbU elas4.m

clear;

probname = ’elas4’
% This problem corresponds to a plate contains an ellipse hole under tension at two
% opposite side, assuming isotropic plane stress. The model modelled as a quarter
% of the original domain and symmetric boundary conditions are considered.
% mu1: major semiaxis
% mu2: minor semiaxis

probtype = ’LE2’;
points = ’[mu1,0;1,0;1,1;0,1;0,mu2]’;
edge = [1,5;5,4;4,3;3,2;2,1];
geometry{1} = [1,2,3,4,5];
gflag = [1];
% material properties, Young modulus and Poisson ratio
matprop{1} = ’[1, 3/10]’;
muref = [0.3,0.3];
mu_min = [0.05,0.05];
mu_max = [0.55,0.55];
mu_bar = [0.3,0.3];
% nload: edge fn ft
% ft is tangential force (aligned with the en, direction is from p1 to p2)
% fn is normal force (cross(en,et)>0))
nload = ’[4,1,0]’;
% dirichlet: edge lab val
% lab can be "x" and "y"
dirichlet = ’[2,x,0;5,y,0]’;
curvedat = ’[0,0,mu1,mu2,0,cos(t),sin(t)]’;
tarclist = ’[1,1,0,pi/2]’;

% Output: The output is the integral of the horizontal displacement along the edge
% of which tension is applied. This output will approach the analytical solution
% for the infinite case when the size of the elliptic hole decreases.
% Analytical solution for the infinite plate with a circular hole is
% available in Roark’s Formulas for Stress and Strain.
outputname = ’elas4’
oload = ’[4,1,0]’;

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

29

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU crack1.m

clear all;

probname = ’crack1’
% plotdemo = 1;
% Problem: This problem corresponds to a plate contains a central crack under tension,
% assuming isotropic plane stress.
% The model is modelled as a quarter of the original domain, symmetric boundary
% conditions are considered.
% mu1: half-length of the crack
% mu2: half-length of the plate
probtype = ’LE2’;
points = ’[0,0;mu1,0;1,0;1,mu2;0,mu2]’;
edge = [1,2;2,3;3,4;4,5;5,1];
geometry{1} = [1,2,3,4,5];
gflag = [1];
% material properties, Young modulus and Poisson ratio
matprop{1} = ’[1, 3/10]’;
muref = [0.5,1.25];
mu_min = [0.2,0.5];
mu_max = [0.8,2.0];
mu_bar = [0.5,1.25];
% nload: edge fn ft
% ft is tangential force (aligned with the en, direction is from p1 to p2)
% fn is normal force (cross(en,et)>0))
nload = ’[4,1,0]’;
% dirichlet: edge lab val
% lab can be "x" and "y"
dirichlet = ’[2,y,0;5,x,0]’;

% Output: The output is the compliant output of the system. This compliant output can
% then be used to calculate the energy release rate and stress intensity factor
% of the model. The calculated stress intensity factor will
% approach the analytical stress intensity factor when the length of the plate increases.
% Analytical solution is available in Murakami’s Stress Intensity Factor Handbook
outputname = ’compliance’

30

oload = ’[4,1,0]’;

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU crack2.m

clear all;

probname = ’crack2’

% Problem: This problem corresponds to a plate contains a circular hole under tension,
% assuming isotropic plane stress.
% There are two cracks developed from two sides of the hole. The model is modelled
% as a quarter of the original domain, symmetric boundary conditions are considered.
% mu1: half-length of the crack
% mu2: radius of the circular hole
probtype = ’LE2’;
points = ’[mu2,0;mu2+mu1,0;1,0;1,2;0,2;0,mu2]’;
edge = [1,2;2,3;3,4;4,5;5,6;1,6];
geometry{1} = [1,2,3,4,5,6];
gflag = [1];
% material properties, Young modulus and Poisson ratio
matprop{1} = ’[1, 3/10]’;
muref = [0.3,0.2];
mu_min = [0.1,0.1];
mu_max = [0.5,0.3];
mu_bar = [0.3,0.2];
% nload: edge fn ft
% ft is tangential force (aligned with the en, direction is from p1 to p2)
% fn is normal force (cross(en,et)>0))
nload = ’[4,1,0]’;
% dirichlet: edge lab val
% lab can be "x" and "y"
dirichlet = ’[2,y,0;5,x,0]’;
curvedat = ’[0,0,mu2,mu2,0,cos(t),sin(t)]’;

31

tarclist = ’[6,1,0,pi/2]’;

% Output: The output is the compliant output of the system. This compliant output can then
% be used to calculate the energy release rate and stress intensity factor of the model.
% Reference solutions are available for comparison in Murakami’s Stress Intensity Factor Handbook.
outputname = ’compliance’
oload = ’[4,1,0]’;

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU crack3.m

clear all;

probname = ’crack3’
% Problem: This problem corresponds to a plate contains two opening edge cracks
% under tension, assuming isotropic plane stress. The model is modelled as a
% quarter of the original domain, symmetric boundary conditions are considered.
% mu1: half-length of the crack
% mu2: half-length of the opening crack
probtype = ’LE2’;
points = ’[0,mu2;mu1,0;1,0;1,2;0,2]’;
edge = [1,2;2,3;3,4;4,5;5,1;2,4];
geometry{1} = [1,6,4,5];
geometry{2} = [2,3,6];
gflag = [1,1];
% material properties, Young modulus and Poisson ratio
matprop{1} = ’[1, 3/10]’;
matprop{2} = ’[1, 3/10]’;
muref = [0.5,0.6];
mu_min = [0.2,0.0];
mu_max = [0.8,1.2];
mu_bar = [0.5,0.6];
% nload: edge fn ft

32

% ft is tangential force (aligned with the en, direction is from p1 to p2)
% fn is normal force (cross(en,et)>0))
nload = ’[4,1,0]’;
% dirichlet: edge lab val
% lab can be "x" and "y"
dirichlet = ’[2,y,0;3,x,0]’;

% Output: The output is the compliant output of the system. This compliant output can then
% be used to calculate the energy release rate and stress intensity factor of the model.
% For the case there are no opening, analytical stress intensity factors are also
% available for comparison in Murakami’s Stress Intensity Factos’s Handbook
outputname = ’compliance’
oload = ’[4,1,0]’;

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...
strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU elashole.m

clear;

probname = ’elashole’
probtype = ’LE1’;
plotdemo = 0;
% LE problem in a rectangular region with a hole made by a parametrized
% ellipse: mu1 and mu2 are the semi-axis
% the region has also a parametrized Young Modulus mu3
points = ’[mu1,0;0,mu2;-mu1,0;0,-mu2;2,2;-2,2;-2,-2;2,-2]’;
edge = [1,2;2,3;3,4;4,1;5,6;6,7;7,8;8,5];
geometry{1} = [1,2,3,4];
geometry{2} = [5,6,7,8];
matprop{1} = ’[mu3, 3/10]’;
matprop{2} = ’[mu3, 3/10]’;
gflag = [0,1];
muref = [1,1,1];

33

mu_min = [0.8,.8,1];
mu_max = [1.2,1.2,5];
mu_bar = [1.0,1.0,1];
curvedat = ’[0,0,mu1,mu2,0,cos(t),sin(t)]’;
tarclist = ’[1,1,0,pi/2;2,1,pi/2,pi;3,1,pi,3*pi/2;4,1,3*pi/2,2*pi]’;

% nload: edge fn ft
% ft is tangential force (aligned with the en, direction is from p1 to p2)
% fn is normal force (cross(en,et)>0))

nload = ’[8,1,0]’;
% dirichlet: edge lab val
% lab can be "x" and "y"
dirichlet = ’[6,x,0;6,y,0]’;

%output is a displacement on side #3
outputname = ’elas3’
oload = ’[3,0,0,0,1]’;

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU elascoat.m

clear;

probname = ’elashole’
% LE problem in two regions (a rectangular area containing a parametrized
% ellipse: mu1 and mu2 are the semi-axis)
% the external region has also a parametrized Young Modulus mu3
probtype = ’LE1’;
points = ’[mu1,0;0,mu2;-mu1,0;0,-mu2;2,2;-2,2;-2,-2;2,-2]’;
edge = [1,2;2,3;3,4;4,1;5,6;6,7;7,8;8,5];
geometry{1} = [1,2,3,4];
geometry{2} = [5,6,7,8];

34

matprop{1} = ’[mu3, 3/10]’;
matprop{2} = ’[1, 3/10]’;
gflag = [1,1];
muref = [1,1,1];
mu_min = [0.8,.8,1];
mu_max = [1.2,1.2,5];
mu_bar = [1.0,1.0,1];
curvedat = ’[0,0,mu1,mu2,0,cos(t),sin(t)]’;
tarclist = ’[1,1,0,pi/2;2,1,pi/2,pi;3,1,pi,3*pi/2;4,1,3*pi/2,2*pi]’;
% nload: edge fn ft
% ft is tangential force (aligned with the en, direction is from p1 to p2)
% fn is normal force (cross(en,et)>0))
nload = ’[8,1,0]’;
% dirichlet: edge lab val
% lab can be "x" and "y"
dirichlet = ’[6,x,0;6,y,0]’;

outputname = ’elas8’
%displacement on side 3
oload = ’[8,0,0,0,1]’;

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU cantilever1.m

clear all;

probname = ’cantilever1’
% Problem: This problem corresponds to a cantilever beam clamped at both side
% under a uniform load on the upper side.
% mu1: length of the beam
probtype = ’LE2’;
points = ’[0,-1/2;mu1/4,-1/2;mu1/2,-1/2;3*mu1/4,-1/2;mu1,-1/2;...

mu1,1/2;3*mu1/4,1/2;mu1/2,1/2;mu1/4,1/2;0,1/2]’;
edge = [1,2;2,3;3,4;4,5;5,6;6,7;7,8;8,9;9,10;10,1];

35

geometry{1} = [1,2,3,4,5,6,7,8,9,10];
gflag = [1];
% material properties, Young modulus and Poisson ratio
matprop{1} = ’[1, 3/10]’;
muref = [10];
mu_min = [2];
mu_max = [18];
mu_bar = [10];
% nload: edge fn ft
% ft is tangential force (aligned with the en, direction is from p1 to p2)
% fn is normal force (cross(en,et)>0))
nload = ’[6,-1,0;7,-1,0;8,-1,0;9,-1,0]’;
% dirichlet: edge lab val
% lab can be "x" and "y"
dirichlet = ’[5,x,0;5,y,0;10,x,0;10,y,0]’;

% Output: The output is the integral of the vertical displacement along the upper side.
% This output will approach the classical solution given by the beam theory
% when mu1 increases.
outputname = ’cantilever1’
oload = ’[6,-1,0;7,-1,0;8,-1,0;9,-1,0]’;

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU cantilever2.m

clear all;

probname = ’cantilever2’
% Problem: This problem corresponds to a curved cantilever beam clamped at one side
% under a uniform pressure at the free end.
% mu1: thickness of the beam
probtype = ’LE2’;
points = ’[1-mu1,0;0,1-mu1;0,1+mu1;1+mu1,0]’;

36

edge = [1,2;2,3;4,3;4,1];
geometry{1} = [1,2,3,4];
gflag = [1];
% material properties, Young modulus and Poisson ratio
matprop{1} = ’[1, 3/10]’;
muref = [0.8];
mu_min = [0.7];
mu_max = [0.9];
mu_bar = [0.8];
% nload: edge fn ft
% ft is tangential force (aligned with the en, direction is from p1 to p2)
% fn is normal force (cross(en,et)>0))
nload = ’[2,1,0]’;
% dirichlet: edge lab val
% lab can be "x" and "y"
dirichlet = ’[4,x,0;4,y,0]’;
curvedat = ’[0,0,1-mu1,1-mu1,0,cos(t),sin(t);0,0,1+mu1,1+mu1,0,cos(t),sin(t)]’;
tarclist = ’[1,1,0,pi/2;3,2,0,pi/2]’;

%Output: The output is the integral of the horizontal displacement along the side of
% the free end.
% The output results can be compared with the thick curved beam solution in Roark’s book.
outputname = ’cantilever2_y’
oload = ’[2,0,1]’;

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU cork.m

clear all;

probname = ’cork’
probtype = ’LE1’;
plotdemo = 1;
points = ’[0,0;mu1,0;2,0;2,1/2;mu1,1/2;0,1/2]’;

37

edge = [1,2;2,3;3,4;4,5;5,6;6,1];
geometry{1} = [1,2,3,4,5,6];
matprop{1} = ’[1, mu2]’;
gflag = [1];
muref = [1,1/8];
mu_min = [1/2,0];
mu_max = [3/2,1/4];
mu_bar = [1,1/8];

nload = ’[6,-1,0]’;
dirichlet = ’[1,y,0;2,y,0;4,x,0;4,y,0]’;

outputname = ’normalforce’ % to compute friction force in x_1
dLIFT = ’[4,0,1]’;

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU squareinchannel.m

clear all;

probname = ’squareinchannel’
probtype = ’LE1’;
plotdemo = 1;
points = ’[0,-1/2+mu1;0,-1;1,-1;1,1;0,1;0,1/2+mu1;1/2,1/2+mu1;1/2,-1/2+mu1;1,0]’;
edge = [1,2;2,3;3,9;4,5;5,6;6,7;7,8;8,1;9,4];
geometry{1} = [1,2,3,9,4,5,6,7,8];
matprop{1} = ’[1, mu2]’;
gflag = [1];
muref = [0,1/4];
mu_min = [-1/10,2/10];
mu_max = [1/10,3/10];
mu_bar = [0,1/4];

38

dirichlet = ’[6,x,0;6,y,1;7,x,0;7,y,1;8,x,0;8,y,1;1,x,0;2,x,0;...
2,y,0;3,x,0;3,y,0;9,x,0;9,y,0;5,x,0]’;

outputname = ’drag’
dLIFT = ’[6,0,1;7,0,1;8,0,1]’;

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

rbU ellipsedrag.m

clear all;

plotdemo = 0;
femOPT.refine = ’subdivision’;
femOPT.maxsize = 500;
probtype = ’LE5’; % axis-symmetric flag

%
% Computation of the force (drag) around an ellipsoid with axis equal to 1
% and mu2 (axisymmetric). We use Stokes by penalty (Poisson ratio \nu is next to 0.5).
% Output should be multiplied by 2*pi to get the complete drag around
% ellipsoid. Reference viscosity is given by 1/2(1+\nu).

probname = ’ellipsedrag’
points = ’[1,0;0,-mu2;0,-8;8,-8;8,8;0,8;0,mu2]’;
edge = [2,1;2,3;3,4;4,5;5,6;6,7;1,7];
geometry{1} = [1,2,3,4,5,6,7];
gflag = [1];
% material properties, Young modulus and Poisson ratio
matprop{1} = ’[1, mu1]’;
muref = [0.4,1];
mu_min = [0.4,0.9];
mu_max = [0.475,1.2];
mu_bar = [0.4,1];

39

curvedat = ’[0,0,1,mu2,0,cos(t),sin(t)]’;

tarclist = ’[7,1,0,pi/2;1,1,-pi/2,0]’;
dirichlet = ’[7,y,0;7,x,0;1,x,0;1,y,0;3,x,0;3,y,1;5,x,0;5,y,1;4,x,0;4,y,1]’;
outputname = ’drag’
dLIFT = ’[1,0,1;7,0,1]’;

% %%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

40

rbMIT on Athena clusters

A possibility for people at MIT with a regular account on Athena (students,
faculty, staff, affiliate, visiting) is to use and run extensive calculations on
Athena cluster, the Unix-based campus-wide computing facility provided
by MIT (see http://web.mit.edu/olh/ for user policy and remote access)
made up of 32 and 64 bits workstations. (Note that at the present people
without any computing facilities and access can use rbMIT software for on-
line calculations through our Matlab webserver facility by testing only some
selected worked problems at the address http://augustine.mit.edu.)

To use rbMIT software on Athena Clusters, after logging in the system
with your personal Kerberos and password, you should reach the directory
location where you want the local rbMIT directory will be placed (for exam-
ple Public or Private). Then you should run the command setup rbMIT
on the Unix prompt. At this time a local directory is created. This directory
contains indications about the current version of rbMIT you are installing
and using on Athena (for example rbMIT Part II and IV 25Sept07). Inside
this directory you can find the usual subdirectories such as rbMIT Library,
rbMIT Aux, rbUfiles, the documentation (for elliptic and parabolic prob-
lems), some problems as example (tailpiano, fin, tdeprod), the license
file and the M-file to add the Matlab path. To go in this directory please
type cd rbMIT Part II and IV 25Sept07.

To launch Matlab you should type on the Unix shell the command add
matlab, press Enter and then type matlab and press Enter again. With
this command at the present you are using Matlab 7.4 by default. If you
are using a 64 bits workstation (a Sun architecture on Athena) you have
to specify also the Matlab version by typing matlab -ver 7.3 or matlab
-ver 7.3 tty if you do not want a separate Matlab window. This version
specification is due to the fact that on 64 bits machines only Matlab 7.3 is
at the present supporting the Matlab Symbolic Toolbox.

Once you are in Matlab (and in the correct version according the machine
you are using) please go inside the rbMIT local directory rbMIT Part II and IV 25Sept07
if you are still outside (using standard cd UNIX commands) and then launch
in Matlab addrbMITpath so that also paths are set.

Now you can go inside a problem directory (for example tailpiano, by
typing cd tailpiano) and you may want to launch an rbU file (for example
rbU tailpiano) and then use rbMIT software for online computing and
visualization.

If you want to create new problems and/or modifying existing ones you
can create new problem directories and copying inside old rbU’s files to be

41

modified just using the standard UNIX commands such as mkdir and cp to
create a new directory or to copy a file, respectively.

An important option to be used is the command cp -r directory to be copied
new location to copy a directory (and all its contents and subdirectories)
from a remote location (for example a course or instructor locker) to a local
subdirectory inside the local rbMIT software directory. This option allows
to move data and to avoid extensive offline calculations just copying data
already stored (and available) and to directly use online facilities during
classes, homework, demo...

42

