
Documentation for rbMIT Software:

Time-Dependent Problems

D.B.P. Huynh, N.C. Nguyen, A.T. Patera, G. Rozza

c© Massachusetts Institute of Technology
See copyright usage notice and license at

http://augustine.mit.edu/rbMIT SystemLicense.htm.

February 24, 2009

I. Directory Structure and “Problem Management”

You have already downloaded the rbMIT PartII SV1 DATE folder from our
website (to your MATLAB R© directory). It contains the documentation
you are reading, the rbMIT Library and rbMIT Aux folders that contain the
rbMIT software, a folder rbUfiles that contain rbU probname.m files (see
below), and the license agreement. All the RB activity will take place in the
rbMIT directory. This documentation focuses on time-dependent (parabolic)
problems. You may wish to see rbMITdoc.pdf for the documentation on
elliptic problems.

For each new problem you wish to create, choose a unique problem name
probname and create a new (sub)folder named probname in the rbMIT di-
rectory. For example, for the problem named probname = ‘tdeprod’, the
folder should be named tdeprod. (This tdeprod folder is in fact included
in the rbMIT directory that you have downloaded.) We provide many other
examples in the rbUfiles folder. Note that in the time-dependent case all
provided examples have probname begin with “tdep”.

In the probname folder, create the “rbU”.m file rbU probname.m. Easi-
est is to cut and paste an rbU blah.m file provided in the rbUfiles folder,
change the name of the file to rbU probname.m, and then modify appropri-
ately according to Section IV. (For the problem named probname = ‘tdeprod’
the rbU tdeprod.m file is included in the rbUfiles folder but also directly
in the tdeprod folder provided.) Once the rbU file is ready, you can do the
Offline execution (Section II) and Online execution (Section III).

Note that there are really two names associated with a problem: the
name of the problem, probname, and the name of the scalar output you wish
to evaluate, outputname. In the course of Offline execution (see Section II),
the software will automatically generate a (sub)folder named outputname

1

in the folder probname (within the directory rbMIT). You may on occasion
need to access data in the outputname folder; however, make sure you are
always in the probname folder when you do the Offline and Online execution
for the problem named probname.

We suggest that you first ‘do’ a few problems for which we provide
rbU files in the rbUfiles folder. To begin, do the probname = ‘tdeprod’
problem with outputname = ‘left’ directly from the tdeprod folder you
will find in the rbMIT directory that you have downloaded; then do a few
problems from the documentation (for example, create the folder named
tdepheatshield in the rbMIT directory, then copy the rbU tdepheatshield.m
file from the rbUfiles folder to the tdepheatshield folder). In each case,
once you have the probname folder and rbU probname.m file set up, proceed
to Sections II and III below.

To create new rbU files for new problems, see Section IV.

II. Offline Execution

To run the problem named probname, put yourself in the probname folder
(which in turn must be in the rbMIT directory, as explained above). Then
at the matlab command prompt >> type rbU probname; i.e.,

>>rbU probname
and sit back and wait.

Note in the rbU file you can specify plotdemo = 1 (lets you see what’s
going on, pausing often for you to hit a key and continue) or plotdemo = 0
(does everything secretively); in many of the rbU files provided in Section IV
we have set plotdemo = 1, so you will need to change this if you prefer the
non-verbose form.

In the Offline stage there is a fair amount of computing, which for real
problems could easily take not only minutes but hours. To facilitate fast
and less painful learning, we have set the default value of meshOPT.maxsize
to 250 (related to the dimension of the underlying FE approximation); how-
ever, for actual “production” calculations, the user will undoubtedly wish
to increase meshOPT.maxsize in order to obtain higher FE resolution. The
Offline stage will generate a bunch of .m and .mat files, the contents of which
you are not obligated to understand.

2

III. Online Execution

III.a. Output Evaluation

The Online stage is your reward: for the problem named probname, you can
evaluate the output named outputname extremely quickly for different val-
ues of the parameter [mu1, mu2,...,muP] (for P parameters) in the input
parameter domain defined by

[mu1 min, mu1 max] × [mu2 min,mu2 max] × [muP min,muP max].
Note you should specify the parameter ranges in the rbU file: mu min =
[mu1 min,...,muP min] and mu max = [mu1 max,...,muP max] (see IV.a.(iv)).

If you have just completed the Offline Execution, you can proceed with
the Online Evaluation. Make sure you stay in the probname folder before
continuing.

Now do
>>[sN, DeltaN] = Online RB(‘probname’,[mu1,mu2,...,muP],‘outputname’)

for example, for the problem named probname = ‘tdeprod’ with output
named outputname = ‘left’, do

>>[sN, DeltaN] = Online RB(‘tdeprod’,[2.5,0.3],‘left’)
Note [mu1,mu2,...,muP] is the value of the parameter for which you wish to
evaluate the output: this parameter value must be in the parameter domain
as specified in the rbU file. Here sN is the RB prediction for the output, and
DeltaN is a rigorous a posteriori error bound for the difference between the
RB output prediction and finite element (FE) output prediction.

A full syntax of Online RB is given below
[sN, DeltaN] = Online RB(’probname’,[mu1,mu2,...,muP],’outputname’,Npr,Ndu,gt,ht)

Here Npr and Ndu are the RB dimensions, gt is the control input associated
with the forcing term, and ht is the control input associated with the output.
Both the control inputs gt and ht are functions of the time parameter t. If
you does not explicitly specify gt and ht, the unity constant will be used
for both of them.

There are actually two kinds of outputs allowed in the time-dependent
case. The first kind, namely point-wise (in time) output, is the integral of
the field over selected regions at different discrete timesteps. The second
kind, namely integral (in time) output, is the integral in time of the control
input ht times the integral of the field over selected regions or over selected
boundary edges. Note that only the second-kind output depends on ht; and
that the first-kind output is a vector quantity, while the second-kind output
is a scalar quantity. For a detailed description about the output, see Section

3

IV.
Below we provide a few illustrative examples how to evaluate the first-

kind and second-kind outputs for different control inputs. To evaluate the
first-kind output, you need to input 1 for ht in Online RB. For example, to
evaluate the first-kind output with gt=sin(t), just do

>> gt=’[sin(t)]’;
>>[sN, DeltaN] = Online RB(’probname’,[mu1,mu2,...,muP],’outputname’,[],[],gt,1)

This will return two vectors sN and DeltaN. For more complicated control
inputs such as the triangular profile gt=t if t ≤ 0.5 and gt= 1-t if t
> 0.5, just set

>> gt=’[t.*(t<=0.5)+(1-t).*(t>0.5)]’;
or such as the step profile gt= t if t ≤ 0.5 and gt = 0 if t > 0.5,
set

>> gt=’[t.*(t<=0.5)]’;
Note that the array multiplicative operator .* must be used instead of the
matrix multiplicative operator *. Otherwise, you will see an error message.

To evaluate the second-kind output with gt=t and ht=sin(t), do
>> gt=’[t]’;
>> ht=’[sin(t)]’;
>>[sN, DeltaN] = Online RB(’probname’,[mu1,mu2,...,muP],’outputname’,[],[],gt,ht)

This will return two scalars sN and DeltaN. Note again that if you do not
specify gt and ht, then gt and ht are set to unity constant in time as
default.

We emphasize that the RB approximation is an approximation to an
FE approximation; the mesh for the latter is printed out if plotdemo =
1. You can change the FE resolution (either automatic adaptive, or a se-
lected number of regular refinements) by setting the flag meshOPT.maxsize
(default = 250) and meshOPT.refine (default is ‘adaptive’, option is
‘subdivision’) in the rbU file, as described in Section IV. The better
the FE approximation, the more expensive the Offline stage; however, the
computational time for the Online stage is independent of the resolution of
the FE approximation. The computational time does depend on and in-
crease with the RB dimensions, Npr and Ndu, that you put in Online RB. In
general, the RB prediction for the output, sN, is more accurate and the a
posteriori error bound, DeltaN, gets smaller as you increase Npr and Ndu.

III.b. Visualization

The Visualization is not as quick as the Online Evaluation. In particular,
the computational time for Visualization is not independent of the resolution

4

of the FE approximation; however, the Visualization is still typically much
faster than direct FE solution/rendering. You should remain exclusively in
the probname folder during visualization.

To Visualize the RB approximation to the FE field for the problem
named probname for the parameter value [mu1,mu2,...,muP] (which must
be in the parameter domain), just do

>>Vis RB(‘probname’,[mu1,mu2,...,muP])
which will present the geometry (which can be parameter-dependent), a
rendering of the field, and a rigorous a posteriori bound for the error in the
RB field relative to the FE field. (The error is an integral of the error2 and
error in the derivative2 over the domain.)

A full syntax of Vis RB is given below
Vis RB(‘probname’,[mu1,mu2,...,muP],Npr,gt,nk,opts)
Here nk is the timestep at which you want to plot the time-dependent

field and opts can be set to ‘mv’ if you want to visualize the field in time
from timestep 1 to nk. The parameter nk must be in the range [1 nt],
where nt is the number of timesteps specified by the user in the rbU file
rbUtdep probname (see Section IV). The default value for nk is nt.

IV. The rbU File

There are several components to the rbU file. We have already discussed
probname, outputname, plotdemo, and meshOPT. These overall descriptors
must go at the beginning of the rbU file. For example, for our tdeprod
problem

probname = ‘tdeprod’
outputname = ‘left’
plotdemo = 1
meshOPT.refine = ‘subdivision’
meshOPT.maxsize = ‘500’

(Note if the user does not set the plotdemo or refinement flag, the software
will choose for the user. However, probname and outputname are required
as the first lines of the rbU file.)

We now turn to the more technical inputs

1. Straight Edges

We shall first describe the case with straight edges, using probname = ’fin’
as our example (probname = ’fin’, outputname = ’left’, plotdemo =
0 or 1, meshOPT.refine = ’subdivision’).

5

(i) Geometry

There is a set of points

points = ’[0,0; mu1,0; mu1,mu2; 0,mu2]’;

note only the parts between the ’[and]’ will change from problem to
problem. Note the points can be constants — better to use fractions
rather than decimals in order to speed up the symbolic processing — or
standard functions of mu1,...,muP expressed in the usual MATLAB R©
lexicon.

There is a set of edges

edge = [1,2; 2,3; 3,4; 4,1];

(no quotes this time). Each pair of integers refers to indices of the
points array: so the 1,2 pair in edge defines a straight line that connects
(0,0) (the first point in the points array) and (mu1,0) (the second
point in the points array); similarly, the 4,1 pair defines a straight
line that connects (0,mu2) (the fourth point in the points array) and
(0,0) (the first point in the points array).

There are a number of geometry{ } cell arrays (note the { } brackets
rather than () parentheses). Each geometry{ } is a list of edges:

geometry{1} = [1,2,3,4];

in our example there is only one geometry array. The above state-
ment defines a boundary: we start with edge 1, then edge 2 (which
must share one endpoint with edge 1), then edge 3, . . . , until we
arrive at edge 4 (which must share an endpoint with edge 1 — form-
ing a complete “cycle”). From this data we infer what we shall call
ProtoRegion{1}: the interior (defined in the obvious way) of the
boundary. (The user does not input the ProtoRegions; the ProtoRegions
are deduced from the user-input geometry edge lists.)

Each geometry{k} will define a ProtoRegion{k}. We need different
ProtoRegions (and hence different geometry) in order to be able to de-
fine different PDE coefficient/physical properties in different parts of
the domain. The intersection of ProtoRegion{k} with ProtoRegion{j}
can be either null, all of ProtoRegion{k} (in which case we say that
ProtoRegion{k} is inside ProtoRegion{j}), or all of ProtoRegion{j}
(in which case we say that ProtoRegion{j} in inside ProtoRegion{k}).

There is a gflag array,

gflag = [1];

6

if gflag(k) = 1 then the ProtoRegion{k} corresponding to geometry{k}
(here k = 1 since for the fin there is only one geometry list) is part of
the final domain (i.e., presence of “material”); if gflag(k) = 0 then
the ProtoRegion{k} corresponding to geometry{k} is a hole (i.e., ab-
sence of “material”).

We now construct the final domain on which the PDE is defined. In
particular, for each ProtoRegion{k} that is not a hole we subtract
all ProtoRegions that are either (a) inside ProtoRegion{k} (as de-
fined above), or (b) a hole (as indicated by gflag). The resulting
ProtoRegion{k} — with nested ProtoRegions and holes removed —
is now denoted Region{k}. (Note if ProtoRegion{j} is a hole, then
it no longer plays any role in the rbU file: the j index is no longer rel-
evant. Thus, if there are three geometry lists, and gflag = [1,0,1],
Region{1} (derived from ProtoRegion{1}) and Region{3} (derived
from ProtoRegion{3}) define the final problem domain.)

(ii) PDE Coefficients

In each Region{k}, we solve for 2-D problems

∂u

∂t
− ∂

∂xi

(
c{k}ij

∂u

∂xj

)
+Ui{k}

∂u

∂xi
+r{k}u = gt(t)f{k} in Region{k}, t ∈ [0, T]

with initial condition
u(t = 0) = u0 .

Here u is the field variable, x = (x 1,x 2) is the spatial coordinate,
c{k} is a 2×2 SPD tensor diffusivity, U{k} = (U 1,U 2) is a velocity,
r{k} is a non-negative scalar, f{k} is a scalar, and u 0 is the initial
data. Furthermore, t is the time parameter which varies in the interval
[0,T], and gt is the control input associated with the forcing term f
and depends on t. However, we note that gt is not a part of the rbU
file. You need to specify gt only in the Online Stage; see Section III.

However, for axis-symmetric 3-D problems which are reduced to 2-D
problems by using cylindrical coordinates, we solve

x1
∂u

∂t
− ∂

∂xi

(
x1c{k}ij

∂u

∂xj

)
+Ui{k}x1

∂u

∂xi
+r{k}x1u = gt(t)x1f{k} in Region{k}, t ∈ [0, T]

In this case, the probtype input must be set to ’TH2’. Since the
tdeprod problem is axis-symmetric, we set probtype = ’TH2’ in rbU tdeprod.m.
If probtype is not specified in a rbU file, the usual 2-D problem is
solved.

7

The quantities c{k}, U{k} = (U 1,U 2), and r{k} are input in the rbU
file via the kappa{k} (for Region {k}) cell array. The (1,1),(2,1),(2,1),(2,2)
entries of kappa{k} are c{k}; the (3,1),(3,2) entries of kappa{k} are
U{k}; and the (3,3) entry of kappa{k} is r{k}. The entries for kappa{k}
for k corresponding to “hole” ProtoRegions should be set to zero. All
of these quantities can be polynomial functions of x and may depend
on the parameter [mu1,mu2,...,muP].

For the tdeprod example,

kappa{1} = ’[1 0 0; 0 1 0; 0 0 0]’;

this means that in our single region (the entire domain), the equation
is

x1
∂u

∂t
− ∂

∂x1

(
x1

∂u

∂x1

)
− ∂

∂x2

(
x1

∂u

∂x2

)
= gt(t)f{1} in Region{1}

corresponding to the heat conduction equation in an axis-symmetric
domain (the rod in our case).

The f{k} are specified via the fareaload input in rbU. In particular,
fareaload consists of (Region number k, f{k}) pairs; the user need
only include those pairs for which f{k} is non-zero. For the fin prob-
lem, f{1} = 0, and hence no fareaload input is required. Values of
f{k} may depends on the parameter [mu1,mu2,...,muP] and can be
polynomial functions of x. For example, f{1} = mu1*x + mu2*x*y^2.

(iii) Time Parameters

For time discretization, the time interval [0,T] is divided into nt
subintervals of equal length dt = T/nt. Thus, the time parameters
include nt and dt, and they must be specified by the user in the rbU
file.

For the tdeprod example,

dt = 0.1;

nt = 50;

which implies T = 5.

(iv) Initial Conditions

The general form for the initial data u0 is

u0(x, µ) =
Qu∑
q=1

Θq
u(µ)uq

0(x)

8

where Θq
u and uq

0 can be specified via theta u and initsol inputs in
rbU, respectively. In particular, initsol is a list of Qu functions of
[x1,x2], while theta u is a list ofQu functions of [mu1,mu2,...,muP].
Note that these functions must be separated out by ;, and that the
number of functions in initsol and theta u must be the same.

For the tdeprod example,

theta u = ’[1]’;

initsol = ’[0]’;

which means u 0 = 1*0 = 0.

Remark. Please be aware that if Matlab is calling Mupad instead of
Maple, for its higher versions, Mupad cannot convert expressions other
than ∗, /,+,−, so if we declare points = ’[1./mu1,0]’ there will be
an error (‘[1.0/mu1,0]’ is fine) and also do not use math expression
containing ./, .∗ in the geometry declarations (points, load, kappa,
etc). However, we can do so in intsol for the unsteady cases (infact,
we must).

Pleease try to avoid floating point number (real number) if you can,
instead using fractional number (if we have 0.3, we better express it as
3/10). This helps to improve the speed in the computing procedures
in the symbolic pre-processor.

(v) Boundary Conditions

Continuity of the field and the flux (the normal component of c{k} ij
du/dx j) is automatically imposed on all internal interfaces — defined
as boundaries between Regions. We now turn to boundary conditions.

Dirichlet conditions are specified via the dirichlet input in rbU. In
particular, dirichlet consists of (edge number, value of the field on
edge number) pairs, where the value of the field on edge number must
be a constant independent of parameter [mu1,...,muP] and x. Note
the edge numbers must correspond to edges on the boundary of the
domain. Note also that if there are no (inhomogeneous or homoge-
neous) dirichlet boundary conditions then the dirichlet input may
be absent from the rbU file. Note that the dirichlet boundary condi-
tions depend on gt. Recall also that gt appears in the right hand side
of the governing equations.

For the tdeprod problem,

dirichlet = ’[2,1]’;

9

which indicates that on edge 2 (which from the edge array and points
list corresponds to the right end of the rod) we impose Dirichlet con-
ditions u = gt(t) * 1.

Turning now to natural boundary conditions, homogeneous Neumann
(flux) boundary conditions require no action. For inhomogeneous Neu-
mann conditions or Robin conditions, we impose the general boundary
conditions

ni c{k}ij
∂u

∂x j
+ g1(u− gt(t)g2) = gt(t)g3

where n i is the unit normal, g1 is the Robin coefficient (possibly
zero), g2 is the “sink” field value (possibly zero), and g3 is the flux
(possibly zero). The coefficients g1, g2, and g3 may all be polynomial
functions of x and/or involve the parameter [mu1,...,muP]. Note the
control input gt are associated with g 2 and g 3.

The coefficients g1,g2,g3 are specified via the nload input in the rbU
file. In particular, nload consists of (edge number, value of g1 on edge
number, value of g2 on edge number, value of g3 on edge number)
4-tuples. (Again, if g1 = g2 = g3 = 0 on an edge, this edge need
not be listed in nload.) Note the edge numbers must correspond to
edges on the boundary of the domain. Note also that if there are
no inhomogeneous Neumann or Robin boundary conditions, then the
nload input may be absent from the rbU file.

For the tdeprod problem,

nload = ’[4,0,0,1;3,1,0,1]’;

which indicates that on edge 4 (which corresponds to the left end of
the rod) we impose a Neumann condition with coefficient g 3=1 and
that on edge 3 (which corresponds to the outer boundary of the rod)
we impose a Robin condition with coefficients g 1=1, g 2=0, g 3=1.
(Note on edge 1 we impose homogeneous Neumann conditions, which
are automatic; thus edge 1 does not appear in either the dirichlet
or nload rbU inputs.)

Note that if you want to solve a problem in which the Dirichlet and
Neumann conditions may have different control inputs other than gt,
you can create a rbU file for each control input and combine these
separate rbUs to get the results.

(vi) The Parameter Domain

10

The key input is the vector mu min = [mu1 min, mu2 min,...,muP min]
and the vector mu max = [mu1 max,mu2 max,...,muP max]: the re-
duced basis is constructed for, and can be queried for, values of mu1
between mu1 min and mu1 max, values of mu2 between mu2 min and
mu2 max,. . . , and values of muP between muP min, muP max. (Note that
P, the number of parameters, is deduced from the input file by the
length of the mu min and mu max vectors.)

For the tdeprod problem,

mu min = [2,0.2];

mu max = [4,0.6];

which means that 2 ≤ mu1 ≤ 0.5 (this is the length of the rod) and
0.2 ≤ mu2 ≤ 0.6 (this is the radius of the rod).

In addition, there are two more technical inputs related to the geom-
etry transformations (muref) and a posteriori error bounds (mu bar).
It is perhaps easiest to set both muref = mu bar = 1/2(mu min +
mu max) for each component of the P-vector; in fact, muref and mu bar
can be different, and can be any parameter value in the parameter do-
main. For the fin problem,

muref = [3,0.4];

mu bar = [3,0.4];

which is in fact the arithmetic mean for the parameter (often a good
choice for geometric parameters).

(vii) Outputs

As mentioned earlier, there are two kinds of outputs allowed in the
time-dependent case. The first kind, namely point-wise (in time) out-
put, is the integral of the field over selected regions

s = Θs(µ)
∫

Region{k}
udx.

Note that s depends on t since u depends on t. In fact, s is evaluated
at nt discrete timesteps.

The second kind, namely integral (in time) output, is the integral in
time of the control input ht times the integral of the field over selected
regions

s = Θs(µ)
∫ T

0

(∫
Region{k}

udx

)
ht(t)dt

11

or over selected boundary edges

s = Θs(µ)
∫ T

0

(∫
Edge{k}

udx

)
ht(t)dt.

Note that the second-kind output depends on ht and is a scalar quan-
tity. It is important to note that ht is not a part of the rbU file. You
need to specify ht only in the Online Stage; see Section III.

To specify an output over selected regions we set the oareaload in-
put in rbU. In particular, oareaload consists of (Region number k,
prefactor to integral over Region number k}) pairs; the user need
only include those pairs for which the prefactor — the term in front
of the integral Θs(µ) — is non-zero. The prefactor may be a poly-
nomial function of x and involve the parameter.

To specify an output over selected edges we set the oload input in
rbU. In particular, oload consists of (edge number k, prefactor to
integral over edge number) pairs; the user need only include those pairs
for which the prefactor — the term in front of the integral Θs(µ) —
is non-zero. All edges must be boundary edges. The prefactor may
be a polynomial function of x and involve the parameter.

Finally, we may ask for the integral of the flux, n i c{k} ij du/dx j,
over selected boundary edges. To specify this output we set the
dLIFT input in rbU. In particular, dLIFT consists of (edge number
k, prefactor to integral of flux over edge number) pairs; the user
need only include those pairs for which the prefactor — the term
in front of the integral — is non-zero. All edges must also appear in
the dirichlet rbU input list (corresponding to edges on which we
impose Dirichlet boundary conditions on u). The prefactor may be
a polynomial function of x and involve the parameter.

We note that an output must be one of the three options above; com-
binations are not allowed. (Multiple outputs are possible...but not for
Dummies.)

For the tdeprod problem, we set

oload = ’[4,1]’;

which indicates that the output is the integral of u over edge 4 (the
left end of the rod) multiplied by prefactor 1.

(viii) “Tailer”

12

All rbU files end with the same tailer, which launches an irreversible
sequence of events that will either successfully terminate upon com-
pletion of the Offline stage — or confuse matlab, erase your hard disk,
and crash your computer. The tailer, to be put verbatim at the end
of every rbU file, is

%%%%%%% no user input required beyond this point
if exist(’plotdemo’)
plotdemo = 0;
end
save rbU ;
addpath(’../rbMIT Aux’)
copyfile(’../rbMIT Aux/Step1 coer noncompliant.m’,...
...strcat(probname,’ ’,’Step1 coer noncompliant.m’))
eval(strcat(probname,’ ’,’Step1 coer noncompliant’))
%%%%%%%

Note that it is also often prudent to put a “clear” statement at the
very beginning of your rbU files — but NOT at the end of your rbU
file.

2. Curvy-Arc Edges

In the case in which the logical edges (point pairs) are connected by straight-
lines, the geometry description above suffices. We consider here the case in
which the point pairs are connected either by elliptical arcs or more general
parametrized curvy arcs.

We first discuss the case of elliptical arcs. Each elliptical arc is a member
of a family of elliptical arcs (this saves the user from needing to re-enter the
same curve description for many geometrically similar edges). All edges that
belong to a particular family are described by the common equation(

x1

x2

)
=
[
O1

O2

]
+
[

cosφ − sinφ
sinφ cosφ

] [
ρ1 0
0 ρ2

] [
cos τ
sin τ

]
where τ is a parametrization of the curve. (This parametrization of course
refers to “τ” and not our parameter [mu1,...,muP].) Here [O1, O2] is the
center, φ is an angle of rotation, and ρ1 and ρ2 are dilations: all of these
quantities may depend on the parameter [mu,...,muP]. Each edge that be-
longs to this family is then defined by (different) “start” and “end” values for
the parameter τ . It is thus clear that these elliptical arcs correspond (appro-
priately enough) to segments of ellipses of prescribed location, orientation,
and major/minor axes.

13

The user provides this information through the curvedat and tarclist
inputs in the rbU file. Here (say for two families)

curvedat = ’[O1 for family 1, O2 for family 1, ρ1 for family 1, ρ2 for
family 1,

φ for family 1, cos(τ), sin(τ); O1 for family 2, O2 for
family 2,

ρ1 for family 2, ρ2 for family 2, φ for family 2, cos(τ),
sin(τ)]’;
note that the last two entries for each family are always (for elliptical arcs)
cos(τ) and sin(τ), respectively. Then tarclist is a list of (edge number,
family to which edge belongs, start value of τ , end value of τ) 4-tuples
for each edge which is elliptical; only edges which are actually elliptical
need be included in the tarclist data. Note that the points list must be
consistent with curvedat and tarclist: for the start and end values of
τ , the curvedat/tarclist description of an elliptical-arc edge must agree
with the corresponding points entries. See rbU examples rbU tdepbobject,
rbU tdepheatshield, rbU tdepreactor, and rbU tdepsphere for various
examples.

We note that there are some restrictions on boundary conditions and
outputs for elliptical-arc edges. We may impose (constant) homogeneous or
inhomogeneous Dirichlet conditions and homogeneous Neumann (flux) con-
ditions on any straight or elliptical-arc edge; however, we may only impose
inhomogeneous Neumann conditions and Robin conditions only on straight
or circular-arc edges (not general elliptical-arc edges). Similarly, we may
consider “oload” outputs only for straight or circular-arc edges (not general
elliptical-arc edges).

Finally, we consider the case of general “curvy”-arc edges. In fact, the
treatment is identical to elliptical-arc edges, except that cos(τ), sin(τ) is
now replaced by general functions c1(τ), c2(τ) selected by the user. See
rbU tdepcurvy as an example.

V. rbU Files

Here is a list of rbU tutorial files provided as examples. These files also
appear separately (for easy copying) in the rbUfiles folder.

rbU tdepadvdiff.m

clear;

14

% Consider time-dependent advection-diffusion in a rectangular channel characterized by the
% length of the channel and Peclet number. Velocity field U = y in x direction and
% V = 0 in y direction. Heat flux is added in at the lower side. The left and top sides
% of the channel are subject to zero temperature, while the right side is subject
% to homogeneous Neumman condition. It simulates a simple scalar flow.
% See rbU_advdiff.m for the steady version of this problem.

probname = ’tdepadvdiff’
probtype = ’TH’;
femOPT.maxsize=500;
plotdemo = 0;

points = ’[0,0;mu1,0;mu1,0.5;0,0.5]’;
%mu1 is the length of channel
edge = [1,2;2,3;3,4;4,1];
geometry{1} = [1,2,3,4];
gflag = [1];
kappa{1} = ’[1./mu2, 0, 0; 0, 1./mu2, 0; y, 0, 0]’;
%mu2 is the Peclet number
muref = [1,1];
mu_min = [1,0.1];
mu_max = [10,10];
mu_bar = [1,1];
dirichlet = ’[3,0;4,0]’;
%zero Dirichlet BC on side 3 and 4
nload = ’[1, 0, 0, 1; 2, 0, 0, 0]’;
% Neumann on other side (non homogeneous on side 1 and zero on side 2)

outputname = ’layer’
oareaload = ’[1,1]’;

initsol = ’[0]’;
theta_u = ’[1]’;
% The temperature is initially set 0 degrees.

nt = 50; % Number of timesteps
dt = 0.05; % Timestep size
% Finally, to complete the problem formulation, we specify that the starting time is 0
% and that we want to study the heat distribution during 2.5 seconds.

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

15

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))
%%%%%%%%%% End of the offline execution.

% Now the user can perform the online stage to rapidly simulate the problem
% for different parameter values. See the software documentation for details.

rbU tdepbobject.m

clear all;

% This example illustrates heat conduction through an elliptical buried object with
% high conductivity.

% We consider a square domain with an embedded elliptical object of minor axis a
% and major axis b. The conductivity of the embedded object is high compared to that of
% the square region. The top surface of the square region is subject to a heat flux.
% The bottom is kept at zero temperature. The rest boundaries are subject to homogeneous Neumman.

probname = ’tdepbobject’
femOPT.maxsize = 500;
femOPT.refine = ’subdivision’;
plotdemo=0;

points = ’[0,0;0,-mu2;mu1,0;0,mu2;0,2;1,2;5,2;5,-5;0,-5]’;
% mu1 and mu2 represent the two axes of a buried object
edge = [1,2;2,3;3,4;4,1;4,5;5,6;6,7;7,8;8,9;9,2];
geometry{1} = [1,2,3,4];
% A buried object with elliptical shape
geometry{2} = [2,3,5,6,7,8,9,10];
% Square region
kappa{1} = ’[mu3 0 0; 0 mu3 0; 0 0 0]’;
% mu3 is conductivity of the buried object
kappa{2} = ’[1 0 0; 0 1 0; 0 0 0]’;

16

gflag = [1,1];
muref = [0.75,0.75,10];
mu_min = [0.5,0.5,5];
mu_max = [1.0,1.0,15];
mu_bar = [0.75,0.75,10];
curvedat = ’[0,0,mu1,mu2,0,cos(t),sin(t)]’;
tarclist = ’[2,1,3*pi/2,2*pi;3,1,0,pi/2]’;
% curvedat and tarclist describe the elliptical shape
nload = ’[6,0,0,1;7,0,0,1]’;
% Heat flux added in at the top surface
dirichlet=’[9,0]’;
% Temperature is kept zero at the bottom

outputname = ’strip’
oload = ’[6,1]’;
% Output is the average temperature over a strip [0,2] of the top surface

% zero initial condition
initsol=’[0]’;
theta_u=’[1]’;
% The temperature field is 0 degrees at the time we start applying heat flux.

nt = 200; % Number of timesteps
dt = 0.05; % Timestep size
% Finally, to complete the problem formulation, we specify that the starting time is 0
% and that we want to study the heat distribution during the first 10 seconds.

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))
%%%%%%%%%% End of the offline execution.

% Now the user can perform the online stage to rapidly simulate the problem
% for different parameter values. See the software documentation for details.

17

rbU tdepchannel.m

clear;

% This example illustates the convection and diffusion of the contaminant
% concentration in a short channel, where the velocity flows from left to right.
% Homogeneous Dirichlet BC is applied on the inflow boundary (the left of the channel),
% while homogeneous Dirichlet BCs are applied on the remaining boundaries.
% The initial distribution of the contaminant concentration is assumed to
% be Gaussian and depends on a parameter mu2. The Peclet number is mu1.

probname = ’tdepchannel’
probtype = ’TH’;
plotdemo = 0;
femOPT.maxsize=500;
femOPT.refine = ’subdivision’;

points = ’[0,0;2,0;2,1;0,1]’;
% A rectangular channel of size 2 by 1
edge = [1,2;2,3;3,4;4,1];
geometry{1} = [1,2,3,4];
gflag = [1];
% operator is 1/mu1*du/dx*du/dx+ 1/mu1*du/dy*du/dy + Udu/dxv + Vdu/dyv
kappa{1} = ’[1./mu1, 0, 0; 0, 1./mu1, 0; 1, 0, 0]’;
% mu1 is the Peclet number
muref = [1,1];
mu_min = [0.1,0.5];
mu_max = [20,2];
mu_bar = [1,1];
dirichlet = ’[4,0]’;
% Zero Dirichlet BC on the inflow boundary

outputname = ’average’
oareaload = ’[1,1]’;
% Output is the average concentration over the whole domain

initsol = ’[exp(-15*(x1-0.5).^2-30*(x2-0.5).^2)]’;
theta_u = ’[mu2]’;
% The initial concentration is gaussian and dependent on mu2.

nt = 50; % Number of timesteps
dt = 0.02; % Timestep size
% Finally, to complete the problem formulation, we specify that the starting time is 0

18

% and that we want to study the heat distribution during the first second.

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))
%%%%%%%%%% End of the offline execution.

% Now the user can perform the online stage to rapidly simulate the problem
% for different parameter values. See the software documentation for details.

rbU tdepcrack.m

clear all;

% This example illustrates heat conduction through a rectangular plate containing a very
% thin crack. The crack is characterized by mu1 (the length) and mu2 (the location).
% Heat flux is added in at the top surface, while the bottom is subject to zero temperature.

probname = ’tdepcrack’
femOPT.maxsize = 500;
femOPT.refine = ’subdivision’;
plotdemo=0;

points = ’[0,.0001; mu1,0; 5,0; 5,mu2; 2,mu2; 0,mu2; 0,-.0001; 5,-5; 0,-5]’;
% mu1 is the length of the crack
% mu2 is the location of the crack from the top surface
edge = [1,2;2,3;3,4;4,5;5,6;6,1;7,2;3,8;8,9;9,7];
% edges 1 and 7 correspond to the two sides of the plate
geometry{1} = [1,2,3,4,5,6]; % the top part of the rectangular plate
geometry{2} = [7,2,8,9,10]; % the bottom part of the rectangular plate
gflag = [1,1];
kappa{1} = ’[1 0 0; 0 1 0; 0 0 0]’; %
kappa{2} = ’[1 0 0; 0 1 0; 0 0 0]’; %
muref = [1,1];
mu_min = [0.5,0.5];
mu_max = [2.0,2.0];

19

mu_bar = [1,1];
nload = ’[4,0,0,1;5,0,0,1]’;
% Heat flux is added in at the top
dirichlet = ’[9,0]’;
% Ambient temperature at the bottom

outputname = ’heatstrip’
oload = ’[5,1]’;
% Corresponding to the average temperature over a strip [0 2] of the top surface.

initsol=’[0]’;
theta_u=’[1]’;
% zero initial data

nt = 50; % Number of timesteps
dt = 0.05; % Timestep size
% Finally, to complete the problem formulation, we specify that the starting time is 0
% and that we want to study the heat conduction in 2.5 seconds.

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))
%%%%%%%%%% End of the offline execution.

% Now the user can perform the online stage to rapidly simulate the problem
% for different parameter values. See the software documentation for details.

rbU tdepcurvy.m

clear all;

% In the following example, a heat transfer problem with differing material
% parameters is solved.

20

% The 2-D domain consists of a square with an embedded curvy region. The square region
% consists of a material with coefficient of heat conduction of 1 and a density of 1.
% The curvy region contains a uniform heat source of 4, and it has a coefficient of heat
% conduction of mu2 and a density of 1. Both regions have a heat capacity of 1.
% The curvy region has radius mu1.

probname = ’tdepcurvy’
plotdemo = 0;
femOPT.maxsize = 500;
femOPT.refine = ’subdivision’;

points = ’[0,0;mu1,0;5,0;5,5;0,5;0,mu1]’;
% mu1 is the radius of the curvy region.
edge = [1,2;2,3;3,4;4,5;5,6;6,1;2,6];
geometry{1} = [2,3,4,5,7];
geometry{2} = [1,6,7]; % curvy region
gflag = [1,1];
kappa{1} = ’[1 0 0; 0, 1, 0; 0 0 0]’;
kappa{2} = ’[mu2 0 0; 0, mu2, 0; 0 0 0]’;
% mu2 is the conductivity of the curvy region
muref = [1,0.3];
mu_min = [0.5,0.1];
mu_max = [2.0,0.5];
mu_bar = [1,0.3];
dirichlet = ’[3,0;4,0]’;
% T=0 on the far field boundary
fareaload=’[2,4]’;
% Radioactive heat source f=4 is applied on the curvy region
curvedat = ’[0,0,mu1,mu1,0,cos(pi/2*t),t]’;
tarclist = ’[7,1,0,1]’;
% Curvy line

outputname = ’average’
oareaload = ’[2,1]’;
% Output is the average temparature of the curvy region

initsol = ’[0]’;
theta_u = ’[1]’;
% The temperature is 0 degrees at the time we start applying heat.

nt = 50; % Number of timesteps
dt = .1; % Timestep size
% Finally, to complete the problem formulation, we specify that the starting time is 0
% and that we want to study the heat distribution during the first five seconds.

21

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))
%%%%%%%%%% End of the offline execution.

% Now the user can perform the online stage to rapidly simulate the problem
% for different parameter values. See the software documentation for details.

rbU tdepgraetz.m

clear;

% We study time-dependent advection-diffusion in a rectangular channel characterized by the
% length of the channel and Peclet number. Velocity field U = 10*y*(1.0-y) (parabolic profile)
% in x direction and V = 0 in y direction. It simulates a simple scalar Graezt flow (see Arpaci).
% See rbU_graetz.m for the steady version of this problem.

probname = ’tdepgraetz’
probtype = ’TH’;
plotdemo = 0;
femOPT.maxsize=600;

points = ’[0,0;1,0;1+mu1,0;1+mu1,1.0;1,1.0;0,1.0]’;
% mu1 is the length of the channel. Note there is a free zone (a square region) before the
% fluid enters the channel
edge = [1,2;2,3;3,4;4,5;5,6;6,1];
geometry{1} = [1,2,3,4,5,6];
gflag = [1];
kappa{1} = ’[1./mu2, 0, 0; 0, 1./mu2, 0; 10*y*(1.0-y), 0, 0]’;
% mu2 is the Peclet number
muref = [1,1];
mu_min = [1,0.1];
mu_max = [10,10];
mu_bar = [1,1];

22

dirichlet = ’[1,0;2,1;4,1;5,0;6,0]’;
% Zero Dirichlet BCs on all sides of the free zone. Temperature is set to 1
% on the top and bottom of the channel. Homogeneous Neumann BC on other sides.

outputname = ’average’
oareaload = ’[1,1]’;
% Output is the average temperature

initsol = ’[0]’;
theta_u = ’[1]’;
% The temperature is initially set 0 degrees.

nt = 50; % Number of timesteps
dt = 0.05; % Timestep size
% Finally, to complete the problem formulation, we specify that the starting time is 0
% and that we want to study the heat distribution during the first 2.5 seconds.

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))
%%%%%%%%%% End of the offline execution.

% Now the user can perform the online stage to rapidly simulate the problem
% for different parameter values. See the software documentation for details.

rbU tdepheatshield.m

clear all;

% This example illustrates heat conduction through a heat shield (a complex
% parameter-dependent domain).

probname = ’tdepheatshield’
plotdemo=0;

23

femOPT.maxsize = 500;
femOPT.refine = ’subdivision’;

points = ’[0,0;mu1,0;mu1,4;0,4+mu2;0,4;mu3,4;mu3,3;0,3;0,2;mu3,2;mu3,1;0,1]’;
edge = [1,2;2,3;3,4;4,5;5,6;6,7;7,8;8,9;9,10;10,11;11,12;12,1;6,3];
geometry{1} = [3,4,5,13];
% The top area
geometry{2} = [1,2,13,6,7,8,9,10,11,12];
% Heat shield
gflag = [1,1];
kappa{1} = ’[1 0 0; 0 1 0; 0 0 0]’;
kappa{2} = ’[1 0 0; 0 1 0; 0 0 0]’;
muref = [2,1.5,1];
mu_min = [1.75,1.25,0.75];
mu_max = [2.25,1.75,1.25];
mu_bar = [2,1.5,1];
dirichlet = ’[1,0]’;
% Dirichlet at the bottom
nload = ’[3, 0, 0, 1]’;
% Heat flux is added in at the top surface
curvedat = ’[0, 4, mu1, mu2, 0, cos(t), sin(t)]’;
tarclist = ’[3,1,0,pi/2]’;

outputname = ’heatarea’
oareaload = ’[1, 1]’;
% Output is the integral of the temperature over the top area

initsol=’[0]’;
theta_u=’[1]’;
% The temperature is 0 degrees at the time we start applying heat.

nt=60; % number of timesteps
dt=0.05; % timestep size
% Finally, to complete the problem formulation, we specify that the starting time is 0
% and that we want to study the heat distribution during the first 3 seconds.

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))

24

%%%%%%%%%% End of the offline execution.

% Now the user can perform the online stage to rapidly simulate the problem
% for different parameter values. See the software documentation for details.

rbU tdepmetal.m

clear all;

% This example studies a heated metal block with a rectangular crack or cavity.
% The left side of the block is heated to 100 degrees centigrade. At the right side
% of the metal block, heat is flowing from the block to the surrounding air at
% a constant rate. All the other block boundaries are isolated.

probname = ’tdepmetal’
plotdemo = 0;
femOPT.refine = ’subdivision’;
femOPT.maxsize = 500;

points = ’[-0.5,-1.0;0,-1;0.5,-1.0;0.5,0;0.5,1.0;0,1.0;-0.5,1.0;...
-0.5,0;-mu1/2,-mu2/2;mu1/2,-mu2/2;mu1/2,mu2/2;-mu1/2,mu2/2]’;

% The rectangular cavity is parametrized by mu1 and mu2
% mu1 is the width and mu2 is the height, respectively.
edge = [1,2;2,3;3,4;4,5;5,6;6,7;7,8;8,1;9,10;10,11;11,12;12,9];
geometry{1} = [1,2,3,4,5,6,7,8]; % Metal block
geometry{2} = [9,10,11,12]; % Rectangular cavity
gflag = [1,0];
kappa{1} = ’[1 0 0; 0, 1, 0; 0 0 0]’;
kappa{2} = ’[1 0 0; 0, 1, 0; 0 0 0]’;
muref = [0.1,0.5];
mu_min = [0.05,0.2];
mu_max = [0.2,0.8];
mu_bar = [0.1,0.5];
dirichlet = ’[7,10;8,10]’;
% T=10 on the left side
nload = ’[3,0,0,-1;4,0,0,-1]’;
% At the right side of the metal block, heat is flowing from the block
% to the surrounding air at a constant rate.

outputname = ’average’
oareaload = ’[1,1]’;
% Output is the average temparature of the metal block

25

initsol = ’[0]’;
theta_u = ’[1]’;
% The temperature of the block is 0 degrees at the time we start applying heat.

nt = 50; % Number of timesteps
dt = .1; % Timestep size
% Finally, to complete the problem formulation, we specify that the starting time is 0
% and that we want to study the heat distribution during the first five seconds.

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))
%%%%%%%%%% End of the offline execution.

% Now the user can perform the online stage to rapidly simulate the problem
% for different parameter values. See the software documentation for details.

rbU tdepreactor.m

clear all;

% "Reactor" problem illustrates Robin conditions and parameter-dependent initial data.

probname = ’tdepreactor’
plotdemo = 0;
femOPT.refine = ’subdivision’;
femOPT.maxsize = 400;

points = ’[0,0;1.5,0;0,1.5;0.5+0.2,0.5;0.5,0.5+0.2;0.5-0.2,0.5;0.5,0.5-0.2]’;
edge = [1,2;2,3;3,1;4,5;5,6;6,7;7,4];
geometry{1} = [1,2,3];
geometry{2} = [4,5,6,7];
gflag = [1,0];

26

kappa{1} = ’[1 0 0; 0 1 0; 0 0 0]’;
kappa{2} = ’[1 0 0; 0 1 0; 0 0 0]’;
muref=[1,1];
mu_min=[0.1,0.5];
mu_max=[10,2];
mu_bar=[1,1];
nload = ’[2,mu1,0,0;4,0,0,1; 5,0,0,1; 6,0,0,1; 7,0,0,1]’;
% mu1 is the Bi number
curvedat = ’[0,0,1.5,1.5,0,cos(t),sin(t);0.5,0.5,0.2,0.2,0,cos(t),sin(t)]’;
tarclist = ’[2,1,0,pi/2;4,2,0,pi/2;5,2,pi/2,pi;6,2,pi,3*pi/2;7,2,3*pi/2,2*pi]’;

outputname = ’area’;
oareaload = ’[1,1]’;

% Parameter-dependent initial data
initsol=’[1.5-x1.^2-x2.^2]’;
theta_u=’[mu2]’;

nt=50; % number of timesteps
dt=0.02; % timestep size

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))
return;
%%%%%%%%%% End of the offline execution.

% Now the user can perform the online stage to rapidly simulate the problem
% for different parameter values. See the software documentation for details.

rbU tdeprod.m

clear all;

% This heat distribution problem is an example of a 3-D heat problem that
% is reduced to a 2-D problem by exploiting axis-symmetrical coordinates.

27

% Consider a cylindrical radioactive rod with radius r and length L. At the left end,
% heat is continuously added. The right end is kept at a constant temperature.
% At the outer boundary, heat is exchanged with the surroundings by transfer.
% At the same time, heat is uniformly produced in the whole rod due to radioactive processes.
% Assume that the initial temperature is zero.

probname = ’tdeprod’
plotdemo = 0;
probtype = ’TH2’; % axis-symmetric flag
femOPT.refine = ’subdivision’;
femOPT.maxsize = 500;

points = ’[0,0;mu1,0;mu1,mu2;0,mu2]’;
% mu1 is the length of the rod
% mu2 is the radius of the rod
edge = [1,2;2,3;3,4;4,1];
geometry{1} = [1,2,3,4];
gflag = [1];
kappa{1} = ’[1 0 0; 0, 1, 0; 0 0 0]’;
muref = [3,0.4];
mu_min = [2,0.2];
mu_max = [4,0.6];
mu_bar = [3,0.4];
fareaload=’[1,5]’;
% Radioactive heat source f=5
nload = ’[4,0,0,1;3,1,0,1]’;
% Heat flux at the left end and Robin condition at the outer boundary
% Homogenuous Neumann condition at the bottom due to symmetry
dirichlet = ’[2,1]’;
% Dirichlet T=1 on the right end

outputname = ’bottom’
oload = ’[1,1]’;
% Output is the average temperature at the bottom of the rod

initsol = ’[0]’;
theta_u = ’[1]’;
% The temperature of the rod is 0 degrees at the time we start applying heat.

nt = 50; % Number of timesteps
dt = 0.1; % Timestep size
% Finally, to complete the problem formulation, we specify that the starting time is 0
% and that we want to study the heat distribution during the first five seconds.

%%%%%%%%%%%% no user input required beyond this point

28

if ~exist(’plotdemo’)
plotdemo = 0;

end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))
%%%%%%%%%% End of the offline execution.

% Now the user can perform the online stage to rapidly simulate the problem
% for different parameter values. See the software documentation for details.

rbU tdepsphere.m

clear all;

% This example illustrates axis-symmetric case which reduces a 3D problem in a sphere to
% a 2D problem in a plane. There is a steady-state solution in some limit.

probname = ’tdepsphere’
plotdemo = 0;
probtype = ’TH2’; % axis-symmetric flag
femOPT.refine = ’subdivision’;
femOPT.maxsize = 500;

points = ’[1,0;3,0;3,3;0,3;0,1;mu2,0;mu2,mu2;0,mu2]’;
% mu2 is the size of the truncated domain
edge = [1,2;2,3;3,4;4,5;1,5;2,6;6,7;7,8;8,4];
geometry{1} = [1,6,7,8,9,4,5];
geometry{2} = [1,2,3,4,5];
gflag = [1,1];
kappa{1} = ’[1 0 0; 0, 1, 0; 0 0 mu1]’;
kappa{2} = ’[1 0 0; 0, 1, 0; 0 0 mu1]’;
muref = [1,6];
mu_min = [1/2,4];
mu_max = [4,8];
mu_bar = [1,6];
dirichlet = ’[5,1;7,0;8,0]’;
curvedat = ’[0,0,1,1,0,cos(pi*t),sin(pi*t)]’;
tarclist = ’[5,1,0,1/2]’;

29

outputname = ’integ’
oareaload = ’[1,1;2,1]’;

%analytical expression for steady-state output is (1/mu1 + 1/sqrt(mu1))
%note the above only true in limit mu2 tends to infinity, however for mu1
%larger even small mu2 are effectively infinite

initsol = ’[0]’; % Zero initial data
theta_u = ’[1]’;
nt = 50; % Number of timesteps
dt = .1; % Timestep size

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))
%%%%%%%%%% End of the offline execution.

% Now the user can perform the online stage to rapidly simulate the problem
% for different parameter values. See the software documentation for details.

rbU tdepstagnation.m

clear all;

% This is a time-dependent convection-diffusion problem which has the velocity
% depending on the spatial coordinates

probname = ’tdepstagnation’
plotdemo = 0;
femOPT.refine = ’subdivision’;
femOPT.maxsize = 500;

points = ’[0,0;1,0;1,1;0,1]’;

30

edge = [1,2;2,3;3,4;4,1];
geometry{1} = [1,2,3,4];
gflag = [1];
kappa{1} = ’[mu1, 0, 0; 0, mu1, 0; x, -y, 0]’;
% mu1 is the conductivity
muref = [1];
mu_min = [.1];
mu_max = [10.];
mu_bar = [1];
dirichlet = ’[1,0;3,1]’;

outputname = ’intsol’
oareaload = ’[1,1]’;
% The output is the integral of the field over the domain.
% Note in the limit that mu1 tends to zero, the field approaches
% u(x_1,x_2,mu1) = erf(x_2/(2 sqrt(mu1)) as t tends to infinity, and hence
% s(mu1) tends to \int_0^1 erf(x_2/(2 sqrt(mu1)) dx_2 in the same limits.

initsol = ’[x2]’; % Initial data
theta_u = ’[1]’; %
nt = 50; % Number of timesteps
dt = .1; % Timestep size

%%%%%%%%%%%% no user input required beyond this point
if ~exist(’plotdemo’)

plotdemo = 0;
end

save rbU ;
addpath(’../rbMIT_Aux’)
copyfile(’../rbMIT_Aux/Step1_coer_noncompliant.m’,...

strcat(probname,’_’,’Step1_coer_noncompliant.m’))
eval(strcat(probname,’_’,’Step1_coer_noncompliant’))
%%%%%%%%%% End of the offline execution.

% Now the user can perform the online stage to rapidly simulate the problem
% for different parameter values. See the software documentation for details.

31

