TU Munich, 16-20 September 2013, RB Summer School

An introduction to geometrical parametrizations for the applications of reduced order modelling: learning by examples FUNDAMENTALS [RHP, 2008, ARCME, Vol. 15, 229-275]

Gianluigi Rozza

Collaboration Network

MOX (A. Quarteroni, F. Ballarin, P. Pacciarini)

EPFL (T. Lassila, F. Negri, P. Chen, D. Forti)

MIT (A.T. Patera, D.B.P. Huynh, C.N. Nguyen)

SISSA (A. Manzoni, D. Devaud), U. Konstanz (L. lapichino)

Outline

Simple Elliptic μ PDEs: Setting Problem Scope: Geometry Problem Scope: Bilinear Forms Working Examples: TBlock **AMass** EBlock3D

Statement

Given $\mu \in \mathcal{D} \subset \mathbb{R}^P$,

evaluate $s^{e}(\mu) = \ell(u^{e}(\mu))^{\dagger}$

where $u^{\mathrm{e}}(\mu) \in X^{\mathrm{e}}(\Omega)$ satisfies

 $a(u^{\mathrm{e}}(\mu),v;\mu)=f(v), \hspace{1em} orall \, v\in X^{\mathrm{e}}$.

[†]Here ^e refers to "exact."

Statement

Definitions and ...

- *μ*: input parameter;
- **D**: parameter domain;
- se: output;
 - linear bounded output functional;
- *u*^e: field variable;
- X^{e} : function space $(H_0^1(\Omega))^{\nu} \subset X^{\mathrm{e}} \subset (H^1(\Omega))^{\nu}$;

P-tuple

Statement

... Hypotheses

 $a(\cdot, \cdot; \mu)$: bilinear, continuous, symmetric, coercive form, $\forall \mu \in \mathcal{D}$; f: linear bounded functional.

COMPLIANT case: $\ell = f$ (and *a* symmetric).

 μPDE

Statement

Affine Parameter Dependence[†]

Definition:

[†]In fact, *broadly applicable* to many instances of

property and geometry parametric variation.

FE Approximation

Galerkin Projection

Given $\mu \in \mathcal{D} \subset \mathbb{R}^P$,

evaluate $s^{\mathcal{N}}(\mu) = f(u^{\mathcal{N}}(\mu))^{\dagger}$

where $u^\mathcal{N}(\mu) \in X^\mathcal{N} \subset X^ ext{e}$ satisfies

 $a(u^\mathcal{N}(\mu),v;\mu)=f(v), \hspace{1em} orall \, v\in X^\mathcal{N}$.

[†]Here $X^{\mathcal{N}}$ is a sequence of FE approximation spaces indexed by $\dim(X^{\mathcal{N}}) = \mathcal{N}$.

0.N

Simple Elliptic µPDEs

FE Approximation

Typical Triangulation

For any $\varepsilon_{\rm des} > 0$, evaluate ACCURACY $\mu \in \mathcal{D}
ightarrow s_N^\mathcal{N}(\mu) ~(pprox s^\mathcal{N}(\mu))$ that provably achieves desired accuracy RELIABILITY $|s^{\mathcal{N}}(\mu) - \overline{s^{\mathcal{N}}_{N}(\mu)}| \leq arepsilon_{ ext{des}}$ but at (very low) marginal cost $\partial t_{\rm comp}^{\dagger}$ **EFFICIENCY** independent of \mathcal{N} as $\mathcal{N} \to \infty$.

Goal

[†] $\partial t_{\rm comp}$: time to perform *one additional certified* evaluation $\mu \to s_N^{\mathcal{N}}(\mu)$.

Real-Time Context (parameter estimation, ...):

Many-Query Context (dynamic simulation, ...):

$$egin{aligned} t_{ ext{comp}}(\mu_j o s_N^\mathcal{N}(\mu_j), \ j = 1, \dots, J) \ &= \partial t_{ ext{comp}} \ J ext{ as } J o \infty \ . \end{aligned}$$

Domain Decomposition

Definition

- $\begin{array}{ll} \text{Original Domain }\Omega_{\mathrm{o}}(\mu) \ , & u_{\mathrm{o}}^{\mathrm{e}} \in X_{\mathrm{o}}^{\mathrm{e}}(\Omega_{\mathrm{o}}(\mu)) \\ & \overline{\Omega}_{\mathrm{o}}(\mu) = \bigcup_{k=1}^{K_{\mathrm{dom}}} \overline{\Omega}_{\mathrm{o}}^{k}(\mu) \ ; \\ \text{reference domain }\Omega \ , & u^{\mathrm{e}} \in X^{\mathrm{e}}(\Omega) \\ & \overline{\Omega} = \bigcup_{k=1}^{K_{\mathrm{dom}}} \overline{\Omega}^{k} \ , & \text{common configuration} \end{array}$
- where $\Omega = \Omega_{
 m o}(\mu_{
 m ref})$ for $\mu_{
 m ref} \subset \mathcal{D}^{\dagger}.$

[†]Connectivity requirement: subdomain intersections

must be an entire edge, a vertex, or null.

Domain Decomposition

Building Blocks

For Ω^k , $\Omega^k_o(\mu)$ we choose in $\mathbb{R}^{2^{\dagger}}$,

(Parallelograms — by hand); Triangles; Elliptical Triangles*; and Curvy Triangles*. EBlock3D

[†]In **R**³, we choose Parallelepipeds (and in theory Tetrahedra).

Affine Mappings

Local

Require

 $orall \mu \in \mathcal{D}$

$$\overline{\Omega}^k_{\mathrm{o}}(\mu) = \mathcal{T}^{\mathrm{aff},k}(\overline{\Omega}^k;\mu) \ , 1 \leq k \leq K_{\mathrm{dom}} \ ,$$

where

$$\mathcal{T}^{\mathrm{aff},k}(x;\mu) = C^{\mathrm{aff},k}(\mu) + G^{\mathrm{aff},k}(\mu)x \ ,$$

is an invertible affine mapping from $\overline{\Omega}^k$ onto $\overline{\Omega}^k_o(\mu)$.

Problem "Scope":
GeometryAffine MappingsGlobal

Further require

 $\forall \mu \in \mathcal{D}$

$$\mathcal{T}^{\mathrm{aff},k}(x;\mu) = \mathcal{T}^{\mathrm{aff},k'}(x;\mu), ~~orall~x\in\overline{\Omega}^k\cap\overline{\Omega}^{k'}, \ 1\leq k,k'\leq K_{\mathrm{dom}}\,,$$

to ensure a *continuous* piecewise-affine global mapping $\mathcal{T}^{aff}(\cdot;\mu)$ from $\overline{\Omega}$ onto $\overline{\Omega}_{o}(\mu)^{\dagger}$.

†It follows that for $w_{\mathrm{o}} \in H^1(\Omega_{\mathrm{o}}(\mu)), \ w_{\mathrm{o}} \circ \mathcal{T}^{\mathrm{aff}} = H^1(\Omega).$

Elliptical Triangles

Definition

Elliptical Triangles

Constraints

Given $\overline{x}_{o}^{2}(\mu), \overline{x}_{o}^{3}(\mu), \text{ find } \overline{x}_{o}^{1}(\mu), \overline{x}_{o}^{4}(\mu) \quad (\Rightarrow \mathcal{T}^{\mathrm{aff},1\&2})$

(*i*) produce desired elliptical arc

(*ii*) satisfy internal angle criterion

conditions ensure continuous invertible mappings.

[†]Explicit recipes for admissible $x_o^1(\mu)$ (Inwards case) and $x_o^4(\mu)$ (Outwards case) are readily obtained.

 $angle orall \mu \in \mathcal{D};$

Elliptical Triangles

Triangulation: 'CinS'...

 $\Omega_{
m o}(\mu)\colon \mu=(\mu_1,\mu_2,\ldots)\subset \mathcal{D}\equiv [0.8,1.2]^2 imes\ldots$

Rozza G.

Certified Reduced-Basis Methods 17

Elliptical Triangles

... Triangulation: 'CinS'

 $\Omega_{
m o}(\mu=(0.8,1.2))$

Curvy Triangles

Definition

Curvy Triangles

Constraints

 $\text{Given } \overline{x}_{o}^{2}(\mu), \overline{x}_{o}^{3}(\mu), \text{find } \overline{x}_{o}^{1}(\mu), \overline{x}_{o}^{4}(\mu) \quad (\Rightarrow \mathcal{T}^{\text{aff},1\&2})$

- (*i*) produce desired curvy arc
- (*ii*) satisfy internal angle criterion

conditions ensure continuous invertible mappings.

[†]Quasi-explicit recipes for admissible $\overline{x}_{o}^{1}(\mu)$ and $\overline{x}_{o}^{4}(\mu)$ can (sometimes) be obtained in the convex/concave case.

 $\forall \mu \in \mathcal{D};$

Curvy Triangles

Triangulation: 'Cosine'...

 $\Omega_{
m o}(\mu)$: $\mu = (\mu_1, \ldots) \subset \mathcal{D} \equiv [rac{1}{6}, rac{1}{2}] imes \ldots$

Curvy Triangles

... Triangulation: 'Cosine'

Problem Scope:
Bilinear FormTransformationOriginal Domain (
$$\mathbb{R}^2$$
)For $w, v \in H^1(\Omega_o(\mu))^{\dagger}$ $u_o^e(\mu) \in H_0^1(\Omega_o(\mu))$ $a_o(w, v; \mu) = \sum_{k=1}^{K_{dom}} \int_{\Omega_o^k(\mu)} \left[\frac{\partial w}{\partial x_{o1}} \ \frac{\partial w}{\partial x_{o2}} \ w \right] \mathcal{K}_{oij}^k(\mu) \begin{bmatrix} \frac{\partial v}{\partial x_{o2}} \\ \frac{\partial v}{\partial x_{o2}} \\ v \end{bmatrix}$ where \mathcal{K}^k : $\mathcal{D} \to \mathbb{R}^{3 \times 3}$, SPD for $1 \le k \le K_{dom}$

(note \mathcal{K}_{o}^{k} affine in x_{o} is also permissible).

[†] We consider the scalar case; the vector case (linear elasticity) admits an analogous treatment.

Problem Scope: Bilinear Form

Transformation

Reference Domain

For $w,v\in H^1(\Omega)$

 $u^{ ext{e}}(\mu) \in H^1_0(\Omega) \ igg[rac{\partial v}{\partial x_1} igg]$

$$a(w,v;\mu) = \sum\limits_{k=1}^{K_{ ext{dom}}} \int_{\Omega^k} \left[egin{array}{c} rac{\partial w}{\partial x_1} & rac{\partial w}{\partial x_2} & w \end{array}
ight] \mathcal{K}^k_{ij}(\mu) egin{array}{c} rac{\partial v}{\partial x_1} \ rac{\partial v}{\partial x_2} \ v \end{array}$$

 $\overline{\mathcal{K}^k(\mu)} = |\det \overline{G^{\mathrm{aff},k}(\mu)}|D(\mu)\mathcal{K}^k_\mathrm{o}(\mu)D^T(\mu), ext{ and } D(\mu) = egin{pmatrix} (G^{\mathrm{aff},k})^{-1} & 0 \ & 0 \ & 0 \ & 0 \ & 1 \ \end{pmatrix}.$

Problem Scope: Bilinear Form

Transformation

Affine Form

Expand

$$a(w,v;\mu) = \underbrace{\mathcal{K}^1_{11}(\mu)}_{\Theta^1(\mu)} \underbrace{\int_{\Omega^1} rac{\partial w}{\partial x_1} rac{\partial v}{\partial x_1}}_{a^1(w,v)} + \dots$$

with as many as Q = 4K terms.

We (Maple) can often greatly reduce the requisite Q.

Problem Scope: Bilinear Form

Transformation

Achtung!

Many interesting problems are *not* affine (or require *Q* very large).

For example,

 $\mathcal{K}_{o}^{k}(x;\mu)$ for general x dependence; and nonzero Neumann conditions on curvy $\partial \Omega$; yield non-affine $a(\cdot, \cdot; \mu)$.

T(hermal)Block: Theory

Geometry

 $\overline{\Omega} = \ \cup_{i=1}^{B_1B_2} \overline{\Omega}_i$

Certified Reduced-Basis Methods 27

T(hermal)Block: Theory

Problem Statement...

Given $\mu \equiv (\mu_1, \dots, \mu_P) \in \mathcal{D} \equiv [\mu^{\min}, \mu^{\max}]^P$ † evaluate $s^{e}(\mu) = f(u^{e}(\mu))$ where $u^{\mathrm{e}}(\mu) \in X^{\mathrm{e}} \equiv \{v \in H^{1}(\Omega) \mid v|_{\Gamma_{\mathrm{top}}} = 0\}$ satisfies $a(u^{e}(\mu), v; \mu) = f(v), \forall v \in X^{e}$.

[†]Here $P = B_1 B_2 - 1$; we require $0 < \mu^{\min} < \mu^{\max} < \infty$.

T(hermal)Block: Theory

... Problem Statement

Here

$$f(v)\equiv f^{
m Neu}(v)\equiv \int_{\Gamma_{
m base}}\!\!\!\! v \;,$$

and

symmetric, coercive

$$a(w,v;\mu) = \sum_{i=1}^{P} \ \mu_i \int_{\Omega_i}
abla w \cdot
abla v + \int_{\Omega_{P+1}}
abla w \cdot
abla v \, ,$$

where $\overline{\Omega} = \cup_{i=1}^{P+1} \overline{\overline{\Omega}_i}$.

Rozza G.

Certified Reduced-Basis Methods 29

T(hermal)Block: Theory

Affine Representation

We obtain $P=B_1B_2-1$ $a(w,v;\mu)=\sum\limits_{q=1}^{Q=P+1}\Theta^q(\mu)~a^q(w,v)$

for

 $\Theta^q(\mu)=\mu_q,\ 1\leq q\leq P, \quad ext{and} \quad \Theta^{P+1}=1 \ ,$

and

$$a^q(w,v) = \int_{\Omega_q} \,
abla w \cdot
abla v, \ 1 \leq q \leq P+1 \, .$$

T(hermal)Block: Theory

Representative Solutions

A(dded)Mass: Practice

Geometry...

A(dded)Mass: Practice

...Geometry

 $=\Omega_{
m o}(\mu_{
m ref}=(2,1,0))$

A(dded)Mass: Practice

Problem Statement...

Given $\mu \equiv (\mu_1, \mu_2, \mu_3) \in \mathcal{D}^{\dagger}$

evaluate $s^{\mathrm{e}} = f(u^{\mathrm{e}}(\mu))$, ADDED MASS

where $u^{
m e}(\mu)\in X^{
m e}\equiv\{v\in H^1(\Omega)\,ig|\,vig|_{\Gamma_s}=0\}$ satisfies $a(u^{
m e}(\mu),v;\mu)=f(v),\ \ orall\,v\in X^{
m e}$.

[†]Here $\mathcal{D} = [1.5, 3] \times [0.5, 1.5] \times [-0.35, 0.35];$

for Demo, \mathcal{D} shall be further restricted.

A(dded)Mass: Practice

... Problem Statement

Here

$$f(v)=\int_{\Gamma_1^+}v-\int_{\Gamma_1^-}v\ ,$$

and

symmetric, coercive

$$a(w,v;\mu) = \int_\Omega {\partial w \over \partial x_i} \; \kappa_{i\,j}(\mu) \; {\partial v \over \partial x_j} \, ,$$

where $\kappa_{ij}(\mu)$ is induced by $\mathcal{T}^{aff}(\cdot;\mu)$.

A(dded)Mass: Practice

Affine Representation...

We obtain

Q = 34

$$a(w,v;\mu) = \sum\limits_{q=1}^Q \; \Theta^q(\mu) \; a^q(w,v) \; ,$$

where the

piecewise affine geometry mapping, and bilinear form affine representation

are generated by symbolic manipulation.
A(dded)Mass: Practice

...Affine Representation

$$\begin{array}{cccc} q & \Theta^{q}(\mu) & a^{q}(w,v) \\ \\ 22 & \frac{\mu_{1}-1+\mu_{3}}{2} & \int_{\Omega_{1}} \frac{\partial w}{\partial x_{2}} \frac{\partial v}{\partial x_{2}} d\Omega + \int_{\Omega_{2}} \frac{\partial w}{\partial x_{2}} \frac{\partial v}{\partial x_{2}} d\Omega + \int_{\Omega_{3}} \frac{\partial w}{\partial x_{2}} \frac{\partial v}{\partial x_{2}} d\Omega \\ \\ 25 & \frac{\mu_{1}}{3} & \int_{\Omega_{5}} \frac{\partial w}{\partial x_{2}} \frac{\partial v}{\partial x_{2}} d\Omega + \int_{\Omega_{6}} \frac{\partial w}{\partial x_{2}} \frac{\partial v}{\partial x_{2}} d\Omega \\ \\ 28 & \frac{2}{\mu_{1}-1+\mu_{3}} & \int_{\Omega_{1}} \frac{\partial w}{\partial x_{1}} \frac{\partial v}{\partial x_{1}} d\Omega + \int_{\Omega_{2}} \frac{\partial w}{\partial x_{1}} \frac{\partial v}{\partial x_{1}} d\Omega + \int_{\Omega_{3}} \frac{\partial w}{\partial x_{1}} \frac{\partial v}{\partial x_{1}} d\Omega \\ \\ 32 & \frac{2}{3}(1+\mu_{3}-\frac{1}{3}\mu_{1}) & \int_{\Omega_{6}} \frac{\partial w}{\partial x_{1}} \frac{\partial v}{\partial x_{2}} d\Omega + \int_{\Omega_{6}} \frac{\partial w}{\partial x_{2}} \frac{\partial v}{\partial x_{1}} d\Omega \end{array}$$

Certified Reduced-Basis Methods 37

A(dded)Mass: Practice

Representative Solutions

Certified Reduced-Basis Methods 38

A(dded)Mass: Practice

Application: Oscillator[†]...

[†](Gross) Assumptions: "small amplitude," inviscid, incompressible flow. Rozza G.

A(dded)Mass: Practice

... Application: Oscillator

Given μ_1, μ_2 :

Many-Query

$$egin{split} \xi(\hat{t}=0) &= \xi_0, \qquad \dot{\xi}(\hat{t}=0) = \dot{\xi}_0 \ , \ & \left(1+rac{s^{
m e}(\mu_1,\mu_2,\mu_3=\xi)^\dagger}{4}
ight) \ddot{\xi} + rac{\hat{k}}{\widehat{m}_B} \xi = 0, \quad 0 < \hat{t} < \hat{t}_f \ . \end{split}$$

Note the added mass $s^e \rightarrow 4.754$ as $\mu_1 \rightarrow \infty$, $\mu_2 \rightarrow \infty$.

[†]For $|\xi|$ small, the approximation $s^{e}(\mu_{1}, \mu_{2}, 0)$ is perhaps sufficient — but also less interesting for our methods.

E(lastic)Block3D

Geometry

Geometry: $\mu_G = \{\mu_1, \mu_2, \mu_3\}$ Young's Modulus: $\mu_E = \{\mu_4\}$

 $egin{aligned} \Omega_{\mathrm{o}}(\mu_{G} = (0.8, 0.8, 0.8)) \ &= \mathcal{T}^{\mathrm{aff}}(\Omega = \Omega_{\mathrm{o}}(\mu_{G,\mathrm{ref}} = (1, 1, 1)); \mu_{G}) \end{aligned}$

E(lastic)Block3D

Problem Statement...

Given $\mu \equiv (\mu_1, \mu_2, \mu_3, \mu_4) \in \mathcal{D}^{\dagger}$

evaluate $s^{e} = f(u^{e}(\mu))$, DISPLACEMENT

for $u^{ ext{e}}(\mu)\in X^{ ext{e}}\equiv\{v\in (H^1(\Omega))^3\,ig|\,vig|_{\Gamma_D}=0\}$ $a(u^{ ext{e}}(\mu),v;\mu)=f(v), \ \ orall\,v\in X^{ ext{e}}\,.$

[†]Here $\mathcal{D} = [0.5, 2] \times [0.5, 2] \times [0.5, 2] \times [0.1, 10].$

E(lastic)Block3D

... Problem Statement

Here

$$f(v) = \int_{\Gamma_T} v_1 \, ,$$

and

$$a(w,v;\mu) = \sum\limits_{m=1}^{27} \int_{\Omega^m} rac{\partial w_i}{\partial x_j} \, \, C_{i\,j\,k\,l}(\mu) \, \, rac{\partial v_k}{\partial x_l}$$

where

$$C_{i\,j\,k\,l}(\mu_{
m ref}) = \lambda^1 \delta_{ij} \delta_{kl} + \lambda^2 (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})^\dagger.$$

[†]Here λ^1 and λ^2 (Lamè constants) depend only on ν (Poisson ratio) = 0.30 and Young mod.

E(lastic)Block3D

Affine Representation...

We obtain

 $Q_a=48,\,Q_f=9$

$$a(w,v;\mu) = \sum\limits_{q=1}^{Q_a} \; \Theta^q_a(\mu) \; a^q(w,v) \; ,$$

and

$$f(v;\mu) = \sum\limits_{q=1}^{Q_f} \, \Theta_f^q(\mu) \, f^q(v) \ ;$$

in this case f also depends (affinely) on μ .

E(lastic)Block3D

...Affine Representation

$$\begin{array}{rcl} q & \Theta_a^q(\mu) & a^q(w,v) \\ \\ 1 & \frac{\mu_2\mu_3\mu_4}{\mu_1} & \int_{\Omega_*} ((2\lambda^2+\lambda^1)\frac{\partial w_1}{\partial x_1}\frac{\partial v_1}{\partial x_1} + \lambda^2(\frac{\partial w_2}{\partial x_2}\frac{\partial v_2}{\partial x_2} + \frac{\partial w_3}{\partial x_3}\frac{\partial v_3}{\partial x_3})) \\ 2 & \frac{\mu_1\mu_3\mu_4}{\mu_2} & \int_{\Omega_*} ((2\lambda^2+\lambda^1)\frac{\partial w_2}{\partial x_2}\frac{\partial v_2}{\partial x_2} + \lambda^2(\frac{\partial w_1}{\partial x_2}\frac{\partial v_1}{\partial x_2} + \frac{\partial w_3}{\partial x_2}\frac{\partial v_3}{\partial x_2})) \\ 3 & \frac{\mu_1\mu_2\mu_4}{\mu_3} & \int_{\Omega_*} ((2\lambda^2+\lambda^1)\frac{\partial w_3}{\partial x_3}\frac{\partial v_3}{\partial x_3} + \lambda^2(\frac{\partial w_1}{\partial x_3}\frac{\partial v_1}{\partial x_3} + \frac{\partial w_2}{\partial x_3}\frac{\partial v_2}{\partial x_3})) \\ 4 & \mu_1\mu_4 & \int_{\Omega_*} (\lambda^1(\frac{\partial w_2}{\partial x_2}\frac{\partial v_3}{\partial x_3} + \frac{\partial w_3}{\partial x_3}\frac{\partial v_2}{\partial x_3}) + \lambda^2(\frac{\partial w_2}{\partial x_3}\frac{\partial v_3}{\partial x_2} + \frac{\partial w_3}{\partial x_2}\frac{\partial v_2}{\partial x_2})) \end{array}$$

Certified Reduced-Basis Methods 45

E(lastic)Block3D

Representative Solutions

 $\mu_4 = 0.2$

 $\mu_4 = 10$

$$\mu_1 = \mu_2 = \mu_3 = 1.0$$

Outline

Convergence: P = 1Convergence: P > 1TBlock AMass EBlock3D

Preliminaries

Inner Products & Norms

 $X^{\mathcal{N}} \subset X^{\mathrm{e}}$ Define, $\forall w, v \in X^{e}$ and, given $\overline{\mu} \in \mathcal{D}$ $egin{array}{rcl} (w,v)_X &\equiv \ ((w,v))_{\overline{\mu}} + au(w,v)_{L^2(\Omega)} \ & \ & \ & \ & \ & \|w\|_X \ \equiv \ (w,w)_X^{1/2} \end{array}
ight\} X \ .$

Certified Reduced-Basis Methods **10**

Formulation

Spaces

Nested Samples:

 $S_N = \{\mu^1 \in \mathcal{D}, \dots, \mu^N \in \mathcal{D}\}, \ 1 \leq N \leq N_{ ext{max}}$.

Hierarchical Spaces: Lagrange $W_N^\mathcal{N} = ext{span}\{u^\mathcal{N}(\mu^n), \ 1 \leq n \leq N\}, \ 1 \leq N \leq N_{ ext{max}}.$

Orthonormal Basis:

 $\{\zeta^{\mathcal{N}\,n}\}_{1\leq n\leq N_{ ext{max}}}= ext{G-S}\left(\{u^{\mathcal{N}}(\mu^n)\}_{1\leq n\leq N_{ ext{max}}};(\ \cdot\ ,\ \cdot\)_X
ight).$

Rozza G.

Certified Reduced-Basis Methods **13**

Formulation

Galerkin Projection...

Optimality:

 $|||u^{\mathcal{N}}(\mu)-u^{\mathcal{N}}_{N}(\mu)|||_{\mu}\leq \inf_{w\in W^{\mathcal{N}}_{N}}|||u^{\mathcal{N}}(\mu)-w|||_{\mu}\,;$

best combination of snapshots.

Note also:

$$s^\mathcal{N}(\mu) - s^\mathcal{N}_N(\mu) \equiv |||u^\mathcal{N}(\mu) - u^\mathcal{N}_N(\mu)|||^2_\mu \,;$$

output converges as square.

Certified Reduced-Basis Methods 17

Formulation

...Galerkin Projection

 $|s^{\mathcal{N}}(\mu) - s^{\mathcal{N}}_{N}(\mu) \equiv |||u^{\mathcal{N}}(\mu) - u^{\mathcal{N}}_{N}(\mu)|||^{2}_{\mu} \ ;$ $s^{\mathcal{N}}(\mu) = f(u^{\mathcal{N}}(\mu)); s^{\mathcal{N}}_{N}(\mu) = f(u^{\mathcal{N}}_{N}(\mu));$ $s^{\mathcal{N}}(\mu)-s^{\mathcal{N}}_N(\mu)=f(u^{\mathcal{N}}(\mu))-f(u^{\mathcal{N}}_N(\mu))=0$ $= a(v, u^{\mathcal{N}}(\mu) - u^{\mathcal{N}}_{N}(\mu); \mu);$ $e(\mu) = u^{\mathcal{N}}(\mu) - u^{\mathcal{N}}_{N}(\mu);$ $a(v, e(\mu); \mu) = a(e(\mu), v; \mu) = a(e(\mu), e(\mu); \mu);$ $a(e(\mu), e(\mu); \mu) = |||u^{\mathcal{N}}(\mu) - u^{\mathcal{N}}_{N}(\mu)|||_{\mu}^{2}.$

Formulation

Discrete Equations[†]

Express
$$u_N(\mu) = \sum_{j=1}^N u_{N\,j}(\mu) \, \zeta^j;$$

then

$$s_N(\mu)\equiv f(u_N(\mu))=\sum\limits_{j=1}^N u_{N\,j}(\mu)\,f(\zeta^j)$$

where

well-conditioned

$$\sum\limits_{j=1}^N a(\zeta^j,\zeta^i;\mu) \ u_{N\,j} = f(\zeta^i), \quad 1\leq i\leq N \ .$$

[†]We suppress \mathcal{N} : \mathcal{N} is *fixed* for *computational purposes*.

OFFLINE-ONLINE Procedure

Evaluation of $s_N(\mu)$ — GIVEN $u_{N\,j}, 1 \leq j \leq N$

OFFLINE: Compute $\zeta^j, \ 1 \le j \le N;$ Form/Store $f(\zeta^j), \ 1 \le j \le N.$ $O(\mathcal{N})$

ONLINE: Perform sum

$$s_N(\mu) = \sum_{j=1}^N u_{Nj}(\mu) f(\zeta^j) - O(N)$$
.

OFFLINE-ONLINE Procedure

Evaluation of $u_{N j}(\mu), 1 \leq j \leq N \dots$

For $a(w,v;\mu)$ affine,

 $\sum\limits_{j=1}^N a(\zeta^j,\zeta^i;\mu) \ u_{N\,j} = f(\zeta^i), \quad 1\leq i\leq N \ \psi \ \sum\limits_{j=1}^N \Big(\sum\limits_{q=1}^Q oldsymbol{\Theta^q}(\mu) \ a^q(\zeta^j,\zeta^i)\Big) \ u_{N\,j} = f(\zeta^i), \ 1\leq i\leq N \ .$

[†]Often (re-)invented: [B], [IR], [MMOPR].

OFFLINE-ONLINE Procedure

... Evaluation of $u_{N,j}(\mu), 1 \leq j \leq N$... OFFLINE: Form/Store $a^q(\zeta^j, \zeta^i), \ 1 \leq i, j \leq N_{\max}^{\dagger},$ $1 \leq q \leq Q.$ $O(\mathcal{N})$ ONLINE: Form $\sum_{i=1}^{Q} \Theta^{q}(\mu) a^{q}(\zeta^{j}, \zeta^{i}), \ 1 \leq i, j \leq N$ $- O(QN^2);$ Solve for $u_{Nj}(\mu), 1 \leq j \leq N - O(N^3)$.

 $^{\dagger}N_{\rm max}$ chosen to satisfy specified error tolerance.

OFFLINE-ONLINE Procedure

... Evaluation of $u_{N\,j}(\mu), \ 1 \leq j \leq N$

$\begin{array}{ll} \text{Note} \ a^q(\zeta^j,\zeta^i) & 1 \leq i,j \leq N_{\max} \\ &= a^q \bigg(\sum\limits_{k=1}^{\mathcal{N}} \ \zeta^j_k \ \phi^{\text{FE}}_k, \sum\limits_{k'=1}^{\mathcal{N}} \ \zeta^i_{k'} \ \phi^{\text{FE}}_{k'} \bigg) \\ &= \sum\limits_{k=1}^{\mathcal{N}} \sum\limits_{k'=1}^{\mathcal{N}} \ \zeta^j_k \ a^q(\phi^{\text{FE}}_k, \phi^{\text{FE}}_{k'}) \ \zeta^i_{k'} \\ &= \underline{Z}_{N_{\max}} \ \underline{A}^{\text{FE}q} \ \underline{Z}_{N_{\max}} \ . \end{array}$

Preliminaries

General "Reduced Model"

Given $\mu \in \mathcal{D}$,

evaluate $s_N^{\mathcal{N}}(\mu) = f(u_N^{\mathcal{N}}(\mu))$, where $u_N^{\mathcal{N}}(\mu) \in X_N^{\mathcal{N}} \subset X^{\mathcal{N}}$ satisfies $\dim(X_N^{\mathcal{N}}) = N^{\dagger}$ $a(u_N^{\mathcal{N}}(\mu), v; \mu) = f(v), \ \forall \ v \in X_N^{\mathcal{N}}$.

[†]Here $X_N^{\mathcal{N}}$ may be a hierarchical or non-hierarchical Lagrange $(W_N^{\mathcal{N}})$ or non-Lagrange RB space (Taylor, Hermite), or even a "non-RB" (non- $\mathcal{M}^{\mathcal{N}}$) space (Kolmogorov).

Rozza G.

Certified Reduced-Basis Methods 24

Preliminaries

Train & Test Samples

"Train" sample:

 $\Xi_{ ext{train}} \subset \mathcal{D} \subset \mathbb{R}^{P}; \hspace{0.5cm} |\Xi_{ ext{train}}| = n_{ ext{train}} \, (\gg 1) \; .$

"Test" sample:

 $\Xi_{ ext{test}} \subset \mathcal{D} \subset \mathbb{R}^{P}; \qquad |\Xi_{ ext{test}}| = n_{ ext{test}} \, (\gg 1) \; .$

Preliminaries

Norms

Given $\Xi \subset \mathcal{D}, y: \mathcal{D} \to \mathbb{R},$ $\|y\|_{L^\infty(\Xi)} \ \equiv \ \mathrm{ess} \sup |y(\mu)| \ ,$ $\mu \in \Xi$ $\|y\|_{L^2(\Xi)} \; \equiv \; \left(|\Xi|^{-1} \, \sum\limits_{\mu \in \Xi} \, y^2(\mu)
ight)^{1/2}.$ Given $z: \mathcal{D} \to X^{\mathcal{N}}$ (or X^{e}) $\|z\|_{L^\infty(\Xi;X)}\ \equiv\ ext{ess sup}\,\|z(\mu)\|_X\,,$ $\mu \in \Xi$ $\|z\|_{L^2(\Xi;X)} ~\equiv~ \left(|\Xi|^{-1} \sum\limits_{\mu \in \Xi} ~\|z(\mu)\|_X^2
ight)^{1/2}.$

3. Greedy

...Actual Method

Here, for $N=1,\ldots$ $\|u^\mathcal{N}(\mu)-u^\mathcal{N}_{W^\mathcal{N}_N}(\mu)\|_X\leq \Delta_N(\mu), \hspace{1em} orall \mu\in\mathcal{D}:$

 $\Delta_N(\mu)$ is a sharp, *inexpensive*[†] a posteriori error bound for $||u^N(\mu) - u^N_{W^N_N}(\mu)||_X$.

Greedy only computes actual (winning candidate) snapshots.

[†]Marginal cost (= average asymptotic cost) is *independent* of \mathcal{N} .

Given $\Xi_{ ext{train}}, \ S_1 = \{\mu^1\}, \ W_1^\mathcal{N} = ext{span}\{u^\mathcal{N}(\mu^1)\} \ ,$

[for $N=2,\ldots,N_{ ext{max}}$:

$$egin{array}{rcl} \mu^N &=& rg\max_{\mu\in \Xi_{ ext{train}}} \, \omega_{N-1}^{-1}(\mu) \, \Delta_{N-1}^{ ext{en}}(\mu) &^{\dagger} \ S_N &=& S_{N-1}\cup \mu^N; \end{array}$$

 $W_N^\mathcal{N} ~=~ W_{N-1}^\mathcal{N} + \mathrm{span}\{u^\mathcal{N}(\mu^N)\}.]$

[†]Typically, $\omega_N(\mu) = |||u_N^\mathcal{N}(\mu)|||_{\mu}$ (or $\omega_N(\mu) = 1$).

Here, for N = 1, ... $|||u^{\mathcal{N}}(\mu) - u^{\mathcal{N}}_{W^{\mathcal{N}}_{N}}(\mu)|||_{\mu} \leq \Delta_{N}^{\mathrm{en}}(\mu), \quad \forall \ \mu \in \mathcal{D}:$ $\Delta_{N}^{\mathrm{en}}(\mu)$ is a sharp, *inexpensive*[†] *a posteriori* error *bound* for $|||u^{\mathcal{N}}(\mu) - u^{\mathcal{N}}_{W^{\mathcal{N}}_{N}}(\mu)|||_{\mu}.$

Greedy^{en} only computes actual (*winning* candidate) snapshots.

[†]Marginal cost (= average asymptotic cost) is *independent* of \mathcal{N} .

Numerics: TBlock-(3, 3)

Geometry

 $\overline{\Omega} = \ \cup_{i=1}^{B_1B_2} \overline{\Omega}_i$

Certified Reduced-Basis Methods 52

Numerics: TBlock-(3, 3)

Greedy^{••}: **RB Energy Error**

[†]Here Ξ_{train} is a Monte Carlo sample in $\ln \mu$ of size $n_{\text{train}} = 5000 \ (\gg N)$; note $|||u^{\mathcal{N}}(\mu) - u^{\mathcal{N}}_{N}(\mu)|||_{\mu} \leq \Delta_{N}^{\text{en}}(\mu)$, and $|||u^{\mathcal{N}}_{N}(\mu)|||_{\mu} \leq |||u^{\mathcal{N}}(\mu)|||_{\mu}$.

Numerics: TBlock-(3, 3)

Effect of $X^{\mathcal{N}}$

Numerics: AMass

Geometry

Numerics: AMass

Greedy^{••}: Sample

Certified Reduced-Basis Methods 56

Numerics: AMass

Greedy^{en}: **RB Energy Error**

Numerics: AMass

Greedy^{••}: **RB** Output Error

[†]Note $|s^{\mathcal{N}}(\mu) - s^{\mathcal{N}}_{N}(\mu)| \leq \Delta_{N}^{s}(\mu)$ and $s^{\mathcal{N}}_{N}(\mu) \leq s^{\mathcal{N}}(\mu)$.

Numerics: EBlock3D

Geometry

Geometry: $\mu_G = \{\mu_1, \mu_2, \mu_3\}$ Young's Modulus: $\mu_E = \{\mu_4\}$

 $egin{aligned} \Omega_{ ext{o}}(\mu_{G} = (0.8, 0.8, 0.8)) \ &= \mathcal{T}^{ ext{aff}}(\Omega = \Omega_{ ext{o}}(\mu_{G, ext{ref}} = (1, 1, 1)); \mu_{G}) \end{aligned}$

Numerics: EBlock3D

Greedy^{•••}: **RB Energy Error**

[†]We discuss computational details and performance subsequently.

Numerics: EBlock3D

Greedy^{••}: **RB** Output Error

[†]Note $|s^{\mathcal{N}}(\mu) - s^{\mathcal{N}}_{N}(\mu)| \leq \Delta^{s}_{N}(\mu)$, and $s^{\mathcal{N}}_{N}(\mu) \leq s^{\mathcal{N}}(\mu)$.

Rozza G.

Certified Reduced-Basis Methods 61