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Geometrical Reduction Computational Reduction Applications

Reduction strategies for simulation/optimization of complex systems

Goal: to achieve the accuracy and reliability of a high fidelity approximation

but at greatly reduced cost of a low order model

Forward and Inverse problems related with geometry/shape variation

Shape changes make in general numerical simulations quite unaffordable, due to

mesh deformations and domain-dependent FE structures assembling

Iterative procedures (e.g. for shape optimization) require multiple evaluations of

outputs depending on field variables and/or geometry

Way: coupling suitable shape parametrizations with reduced basis methods

Introduce a low-dimensional shape parametrization (geometrical reduction)

Bring geometry variations back to the equation coefficients

Evaluate PDEs/output using reduced basis methods (computational reduction)
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Geometrical Reduction Computational Reduction Applications

The curse of dimensionality in shape-related model reduction problems

Computational complexity of constructing the parametrized model grows

exponentially with the number of parameters, due to need to sample the

parameter space

Curse of dimensionality alleviated (but not eliminated) by better sampling

strategies: sparse grids, latin hypercubes, adaptive sampling etc.

Model reduction methods limited to small number of parameters (usually 5–10)

Shapes are infinite-dimensional objects, large number of parameters needed to

capture all possible variability if no a priori information available

How to represent shapes using parametrizations?



Geometrical Reduction Computational Reduction Applications

Shape families of diffeomorphic images of a reference domain

Ω Ωo (µ1) Ωo (µ2) Ωo (µ3) Ωo (µ4) Ωo (µ5) Ωo (µ6)

Reference domain Ω⊂ Rd with fixed computational mesh Th

Define a parametric family of diffeomorphisms

T : Rd ×D → Rd s.t T (·; µ),T−1(·; µ) ∈W 1,∞(Rd ;Rd ) for all µ ∈D

Family of admissible shapes Oad defined as

Oad :=
{

Ωo ⊂ Rd : Ωo (µ) = T (Ω; µ) for some µ ∈D
}

Transformation of the PDE back to the reference domain by a change of coordinates∫
Ωo (µ)

∇yo ·∇wo dxo 7−→
∫

Ω

[
∇x T (x ,µ)−T

∇x T (x ,µ)−1
]

∇y ·∇w |det(∇x T )|dx

etc. for all the various bilinear forms in the weak form of the PDE

Limitation: All shapes Ωo are diffeomorphic to each other ⇒ topological properties fixed a priori.



Geometrical Reduction Computational Reduction Applications

Option #1: Piecewise affine transformations based on subdomain division

Construction:

Divide into nonoverlapping subdomains

Ωo =
⋃K

k=1 Ω
k
o

Locally affine mappings on each subdomain

Ωok (µ) = T aff,k (Ω
k

; µ), s.t.

T aff,k
i (x ; µ) = C aff,k

i (µ)+
d

∑
j=1

G aff,k
ij (µ)xj , 1≤ i ≤ d

Global continuity condition

T aff,k = T aff,k ′ for all x ∈Ω
k ∩Ω

k ′
,1≤ k < k ′≤K

Automatic decomposition tools in rbMIT

(R., Huynh, Nguyen et al)

Inwards:

Outwards:



Geometrical Reduction Computational Reduction Applications

Option #2: Free-form deformation (with tensor Bernstein polynomials)

Construction:

Parametric map: T (x,µ) =
L

∑
l=0

M

∑
m=0

bL,M
l ,m (Ψ(x))(Pl ,m + µ l ,m) where

bL,M
`,m (s,t) = bL

` (s)bM
m (t) =

(
L

`

)(
M

m

)
(1− s)L−`s`(1− t)M−mtm

are tensor products of Bernstein basis polynomials

FFD mapping defined as Ωo (µ) = Ψ−1 ◦ T̂ ◦Ψ(Ω; µ) =: T (Ω; µ)

Parameters µ1, . . . ,µP are displacements of selected control points
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Option #2: Free-form deformation (with tensor Bernstein polynomials)

Example: shape optimization of a 3D bulb in a Stokes flow

Images courtesy of F. Ballarin
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Option #3: Radial basis functions
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Construction:

Set of scattered interpolation sites Ξ := {xm}M
m=1 ⊂ R2, not collinear.

Shape function∗ ϕ : R+
0 → R satisfying certain positivity constraints

Deformation map defined under the form:

T (x,µ) = x +
M

∑
m=1

wm(µ) ϕ(‖x−xm‖)

where wm(µ) are obtained by solving the interpolation system
ϕ(x1−x1) . . . ϕ(x1−xM )

...
. . .

...

ϕ(xM −x1) . . . ϕ(xM −xM )




wT
1 (µ)

...

wT
M (µ)

=


µT

1

...

µT
M

 ,

i.e. parameters µm are the point values of an (arbitrary) displacement field at Ξ

∗Possible choices: exp(−αr 2) (Gaussian), (r 2 + α2)1/2 (multiquadric), α|r |3 (cubic), etc.
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Option #4: Transfinite interpolation -based maps

Ingredients:

For each Γi ⊂ ∂Ω, i = 1, . . . ,n, a weight

function ϕi : Ω→ [0,1] and a projection

function πi : Ω→ [0,1], obtained as solution of

a suitable Laplace problem on Ω

For each edge Γoi ⊂ ∂Ωo (µ), a parametrized

edge function ψi (·,µ) : [0,1]→ Γoi

Construction:

T (x,µ) =
n

∑
i=1

[ϕi (x)ψi (πi (x),µ)−ϕi (x)ϕi+1(x)ψi (1,µ)]

Images courtesy of L. Iapichino
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Comparison of shape parametrization methods in model reduction
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Piecewise affine FFD RBF Transfinite maps

Parametrization method Pros Cons

Piecewise affine + Affine parametrization – Mesh dependent

(Rozza/Veroy 2007, + Automatic in rbMIT – Regularity only C 0

Rozza et al 2008) – Tedious to do by hand

FFD + Mesh independent – Tensor-product grid

(Lassila/R. 2010, + Efficient implementations – Not interpolatory

Manzoni/Quarteroni/R. 2011) – Poor for rigid deforms

RBF + Mesh independent – Choice of support size

(Manzoni/Quarteroni/R. 2012) + Scattered control points – Expensive evaluation

+ Interpolatory

Transfinite maps + Edge-based deformation – Solving PDEs required

(Løvgren/Maday/Rønquist 2006, – “Simple” geometries

Iapichino/Quarteroni/R. 2012)
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Computational Reduction

Acknowledgement: Anthony T. Patera (MIT) - augustine.mit.edu



Geometrical Reduction Computational Reduction Applications

Flow around parametrized airfoils

Flow simulation around different airfoils within a NACA family

evaluation of the airfoil performance (pressure coefficient)

Affine mappings based on domain decomposition and boundary parametrization

xo =

(
1

0

)
+

(
cos µ2 −sin µ2

sin µ2 cos µ2

)(
−1 0

0 ±µ1/20

)(
1− t2

ϕ(t)

)
, t ∈ [0,

√
0.3]

xo =

(
0

0

)
+

(
cos µ2 −sin µ2

sin µ2 cos µ2

)(
1 0

0 ±µ1/20

) (
t2

ϕ(t)

)
, t ∈ [

√
0.3,1],

ϕ(t) = 0.2969t−0.1260t2−0.3520t4 + 0.2832t6−0.1021t8

thickness µ1 ∈ [4,24], angle of attack µ2 ∈ [0,π/4]
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Flow around parametrized airfoils

Laplace equation(velocity potential):

−∆φ = 0 in Ωo (µ)
∂φ

∂n
= 0 on Γw(µ)

∂φ

∂n
= φin on Γin(µ)

φ = φref on Γout(µ),

Pressure and velocity:

v = ∇φ

p +
1

2
ρ|u|2 = pin +

1

2
ρ|v in|2, in Ωo (µ),

Pressure coefficient

cp(p) =
p−pin

1
2 ρ|uin|2

= 1−
(
|u|2

|uin|2

)
,
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0

0.2

0.4

0.6

0.8

µ
1

µ 2

RB Greedy algorithm

Greedy sampling (parameter space) Automatic affine maps + domain decomposition
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Flow around parametrized airfoils

pressure fields velocity fields

Number of FE dof N ≈ 3,500

Number of RB basis functions N 8

Automatic affine domain decomposition toffline
FE = 8h

Greedy algorithm + RB structures/space toffline
RB = 4h

Computational speedup tonline
RB /tonline

FE = 2503
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Pressure coefficients for two different NACA airfoils

3
Computations carried out on a single processor of a 2GHz Dual Core AMD Opteron(tm), processors 2214 HE and 16 GB of RAM
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Flow around parametrized airfoils

Other possible options

FFD
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Geometrical Reduction Computational Reduction Applications

Flow across parametrized carotid bifurcations

Vessels geometry strongly influences haemodynamics behaviour

Study the influence of the vessel shape on blood flow

Real-time evaluation of flow indexes related with geometry variation

that assess/measure arteries occlusion risk (e.g. vorticity, viscous

energy dissipation) [Manzoni, Quarteroni, R. 11]

Output evaluation problem:

evaluate Jo (Ωo ;v) =
∫

Ωo

|∇v|2dΩo s.t.
−ν∆v + (v ·∇)v + ∇p = f in Ωo

∇ ·v = 0 in Ωo

v = vg on Γo
w := ∂Ωo \Γo

out ,

−p ·n + ν
∂v

∂n
= 0 on Γo

out

A case of interest: carotid artery bifurcation (e.g. in presence of stenosis)

Shape reconstruction through parameter identification

Shape sensitivity analysis



Geometrical Reduction Computational Reduction Applications

Flow across parametrized carotid bifurcations

Family of healthy

carotid bifurcations

(intra-patients

variability)

Global deformations

(RBF with ϕ(r) = r3)

Family of stenosed

carotid bifurcations

(stenosis growth

as shape change)

Local deformations

(RBF with ϕ = exp(−r2))
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Flow across parametrized carotid bifurcations
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Number of FE dof Nv +Np 24046

Number of RB functions N 16

Number of design variables P 7

Nonlinear system dimension reduction 500:1

FE evaluation tFE (s) 217.76

RB evaluation tonline
RB (s) 2.31

• Error estimation and • true error RB vs. FE approximation

Shape reconstruction

t = 5.35s

RB flow simulation

t = 2.31s

Output evaluation

t = 1.54s
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Computational times are obtained as an average over 50 shape reconstructions/RB Online evaluations
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Flow across parametrized carotid bifurcations
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Flow across parametrized carotid bifurcations

Flow sensitivity analysis wrt large local shape deformations

Shape Parametrization: RBF, Gaussian kernel (φ(r) = exp(−r2)), P = 4 input
parameter (displacements of • control points)

Velocity profiles [cm/s] in four
different carotid bifurcations parametrized
wrt the diameters dc = dc (µ1,µ2) of the

CCA at the bifurcation and db = db(µ3,µ4)
of the mid-sinus level of the ICA.

Affine components Q 62

FE space dim. Nv +Np ≈ 26,000

RB space dim. Nmax 15

FE evaluation tonline
FE (s) 1,125

RB evaluation tonline
RB (s) 2.47

Computational speedup 456
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Flow across parametrized carotid bifurcations

Flow sensitivity analysis wrt large local shape deformations
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Flow Control and Optimal Design with Reduced Basis Methods

Flow Control and Optimal Design

with Reduced Basis Methods
using Free-Form Deformation Techniques

Gianluigi Rozza Reduced Basis approximation for parametrized PDEs 26 / 40



Flow Control and Optimal Design with Reduced Basis Methods

Example 1: Potential Flow Optimization Problem

Airfoil inverse design problem

min
µ∈D

(∫ 1

0
|p(s,µ)−ptarget(s)|2 ds

)1/2

+ λ [α(µ)−5◦]2 ,

s.t.
∫

Ωo(µ)
∇u ·∇v dΩo =

∫
Ωo(µ)

fv dΩo ∀v ∈ H1(Ωo(µ))

u = 0 on Γout ,
∂u
∂n

=−1 on Γin,
∂u
∂n

= 0 elsewhere

Choose target airfoil (ex: NACA4412) and
compute pressure distribution ptarget on its surface
using the Bernoulli equation (p = p0− 1

2 |∇u|2)

Objective: find small perturbation of reference
airfoil NACA0012 s.t. pressure distribution on the
airfoil surface is close to ptarget

Add penalty term to enforce the constraint on
the angle of attack (AOA = 5◦)

Gianluigi Rozza Reduced Basis approximation for parametrized PDEs 27 / 40



Free-Form Deformations in Action

Figure: An example of the reference airfoil and a deformed configuration.

Gianluigi Rozza, Toni Lassila Parametric free-form shape design with PDEs models and Reduced Basis Method 6 / 23



Flow Control and Optimal Design with Reduced Basis Methods

Example 1: Approximation Details

Pressure distributions and computational cost (online solution of the parametric PDE)

Inverse design Target airfoil NACA4412
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Finite element method
Reduced basis method

Computational costs

Number of mesh nodes N 8043
Lattice of FFD control points P i,j 6×4
Number of shape parameters∗ 8
Number of reduced basis functions N† 52
Error tolerance for RB greedy εRB

tol 10−4

Number of affine expansion terms Qa 80
Error tolerance for EIM greedy εEIM

tol 2.5×10−3

∗Reduction of 50:1 in parametric complexity compared to explicit nodal deformation
†Reduction of 200:1 in linear system dimension

Gianluigi Rozza Reduced Basis approximation for parametrized PDEs 28 / 40



Flow Control and Optimal Design with Reduced Basis Methods

Example 2: Optimal Design of Airfoils in Thermal Flows

Optimal heat exchange problem

min
µ∈D

[
utarget −

1
|Γout |

∫
Γout

u(x) dΓ

]2

+ λ [α(µ)−α0]2 ,

s.t.
∫

Ωo(µ)

(
ε∇u ·∇v + v~b ·∇u

)
dΩo =

∫
Ωo(µ)

fv dΩo

∂u
∂n

= 0 on Γout , u = T0 on Γin ∪Γfree,

u = T1 on Γsurf , u = T2 on airfoil

Objective: find airfoil shape and vertical
position s.t. average temperature over outflow
equals utarget and angle of attack equals α0

Heat exchange of an airfoil in exterior flow with
~b = [1;0] and ε = 0.2 is considered

Penalty term enforces the constraint on the
angle of attack (AOA = α0)

Gianluigi Rozza Reduced Basis approximation for parametrized PDEs 29 / 40



Flow Control and Optimal Design with Reduced Basis Methods

Example 2: Approximation Details

α0 = 7◦, utarget = 4.1 α0 =−5◦, utarget = 4.5

Number of mesh nodes N 15718
Lattice of FFD control points P i,j 6×6
Number of shape parameters∗ 8
Number of reduced basis functions N† 36
Error tolerance for RB greedy εRB

tol 10−5

Number of affine expansion terms Qa 108
Error tolerance for EIM greedy εEIM

tol 10−4

∗Reduction of 100:1 in parametric complexity compared to explicit nodal deformation
†Reduction of 436:1 in linear system dimension

Gianluigi Rozza Reduced Basis approximation for parametrized PDEs 30 / 40



Shape optimization in viscous flows

Example 3: Bypass Anastomosis Shape Optimization

Aorto-coronaric bypass shape design problem

min
µ∈D

γ

2

∫
Ωc

o(µ)
|∇×u(µ)|2 dΩo, Ωc

o(µ)⊆Ωo(µ)

s.t.


ν

∫
Ωo(µ)

∇u ·∇wdΩo−
∫

Ωo(µ)
p∇ ·wdΩo =

∫
Ωo(µ)

f ·wdΩo ∀w ∈ (H1
0,ΓD

(Ωo(µ)))2,∫
Ωo(µ)

q∇ ·udΩo = 0 ∀q ∈ L2(Ωo(µ)),

u = g on ΓD , ν
∂u
∂n −pn = 0 on ΓN

Focal intimal thickening affects the long-term
efficacy of coronary bypass procedures; geometry
changes affect vorticity, shear stress and shear
stress gradient

Objective: find an optimal aorto-coronaric bypass
anastomosis shape s.t. vorticity is minimized in a
given subregion Ωc

o(µ) of the downfield branch

Requirement: allow general deformations using a
small parameters set

Gianluigi Rozza Reduced Basis approximation for parametrized PDEs 31 / 40



Shape optimization in viscous flows

Example 3: Approximation Details

Shape sensitivity

Bypass central sections obtained with FFD for different parameter choices

Number of mesh nodes N 5421
Lattice of FFD control points P i,j 3×3
Number of shape parameters∗ 1
Number of reduced basis functions N † 10
Error tolerance for RB greedy εRB

tol 10−4

Number of affine operator components Q 87
Error tolerance for EIM greedy εEIM

tol 10−3

∗Reduction of 100:1 in parametric complexity compared to explicit nodal deformation
†Reduction of 400:1 in linear system dimension

Gianluigi Rozza Reduced Basis approximation for parametrized PDEs 32 / 40



Shape optimization in viscous flows

Example 3: Approximation Details

Shape sensitivity

Velocity and pressure fields for different parameters (rbMIT + MLIfe)

Gianluigi Rozza Reduced Basis approximation for parametrized PDEs 33 / 40



Shape optimization in viscous flows

Example 3: Approximation Details

Shape optimization

min
µ∈D

γ

2

∫
Ωc

o(µ)
|∇×u(µ)|2 dΩo

Initial configuration Final configuration

Number of mesh nodes N 4269
Lattice of FFD control points P i,j 5×6
Number of shape parameters∗ 8
Number of reduced basis functions N † 23
Error tolerance for RB greedy εRB

tol 10−4

Number of affine operator components Q 122
Error tolerance for EIM greedy εEIM

tol 10−6

∗Reduction of 51:1 in parametric complexity compared to explicit nodal deformation
†Reduction of 540:1 in linear system dimension

Gianluigi Rozza Reduced Basis approximation for parametrized PDEs 34 / 40



Shape optimization in viscous flows

Example 3: Approximation Details

Shape optimization

Initial configuration Final configuration

Output evaluations during optimization 45
Vorticity reduction 37%

tonline
FE 207.21s

tonline
RB 1.251s

speedup 195

Gianluigi Rozza Reduced Basis approximation for parametrized PDEs 35 / 40



New trends and perspectives

3D applications in larger contexts

Applications more oriented to industry and
realistic problems (thermal, micro-fluidic,
material science and life sciences)

Large scale problems and complex systems
(multiphysics)

Integration of the metodology into the “HPC”
(High-Performance Computing) framework

Gianluigi Rozza Reduced Basis approximation for parametrized PDEs 36 / 40



New trends and perspectives

Towards a general approach on free boundary problems

Fluid-Structure Interaction problems (blood
flow in arteries)

FFD is used to manage the geometrical
parameters modelling the wall
displacement (structure, elastic part)

Strong parametric coupling FSI

1) Initial guess µ0, k = 0;

2) repeat

solve the RB equations for (uk ,pk ) in Ω(µk );

compute assumed traction τ̂(uk ,pk );

solve the minimization problem

µ
k+1 = argmin

µ∈D
1
2

∫
Σ
|η(µ)− η̂ |2dΓ

where η(µ) is the interface displacement given
by geometrical parametrization and η̂ solves∫

Σ
K η̂
′
β
′dΓ =

∫
Σ

τ̂βdΓ ∀ β ∈ X(Σ);

k := k+1;
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Summary

Summary

Optimal control...
Suitable shape parametrizations enable to use optimal control theory
Flexible approach providing powerful tools for solving different problems

...and reduced modelling...
Model order reduction by geometrical parametrization and PDE solved with
reduced basis methods
Free-form deformations are a flexible shape parametrization tool which can
be coupled with reduced basis methods

... for complex problems
Interest in working with (linear/nonlinear) viscous flows in more realistic
geometries
Possibility to provide rapid and reliable optimal solutions
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