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Overview and Methodology

Overview
@ Certified Reduced Basis method and associated software package rbMIT
o Problem Formulation and Reduced Basis approximation
@ Examples of steady and unsteady conduction worked problems
o a thermal fin

o a thermal analysis of a delamination crack

rbMIT Methodology
@ Input parameter (problem data) and desired outputs (thermal quantities)
@ Computational stages

o Offline (“Instructor” level)
o Online (“Lecturer/Student”level ): rapid and reliable prediction of outputs
and rigorous error bounds

SISSA
T available for educational and academic use at http://augustine.mit.edu

A. Manzoni, G. Rozza rbMIT: Heat Transfer examples



Outline

Motivation

Heat Transfer Education:

@ classical approaches such as finite element method are often too slow and low
order heuristic approaches are often unreliable

Goal: to achieve the accuracy and reliability of a high fidelity approximation but at
greatly reduced cost of a low order model J

Pedagogical prospects:
@ interactive in-class visualization and parametric exploration
@ rapid assessment of classical engineering approximations and interpretations

@ more realistic examples in homework assignment and design projects

collection/catalogue of many worked problems, available on line *

Way: certified Reduced Basis Method for rapid and reliable prediction of engineering
outputs associated with parametrized PDEs J

* http://augustine.mit.edu
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Motivation

Heat Transfer Education:

@ classical approaches such as finite element method are often too slow and low
order heuristic approaches are often unreliable

Goal: to achieve the accuracy and reliability of a high fidelity approximation but at
greatly reduced cost of a low order model J

Pedagogical prospects:
@ interactive in-class visualization and parametric exploration
@ rapid assessment of classical engineering approximations and interpretations
@ more realistic examples in homework assignment and design projects

@ collection/catalogue of many worked problems, available on line *

rapid = minimiziation of the marginal cost in 1/O evaluation
reliable = error bounds of input/output evaluation or field variable

useful in real-time/interactive or many queries context such as robust parameter

estimation, design, optimization and control

e
SISSA

* http://augustine.mit.edu
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Motivation

Input and Output

@ Input parameter: © € D C RP — geometry, material prop., BCs, sources, ...
@ Output of interest: s(u) =¢(u(n)) — related to temperature or fluxes

@ Field variable: temperature u(u) — satisfies a -parametrized PDE

SISSA
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Outline

Motivation

Input and Output
@ Input parameter: © € D C RP — geometry, material prop., BCs, sources, ...
@ Output of interest: s(u) =¢(u(n)) — related to temperature or fluxes

@ Field variable: temperature u(u) — satisfies a -parametrized PDE

1 1 —1 T

@ Rapidly convergent global reduced basis (RB) approximations (Galerkin projection
onto a space spanned by solution of governing PDE at N selected ,LL17..‘,/JN)

@ Rigorous a posteriori error estimation procedures (inexpensive yet sharp bounds
for the error in the RB field-variable and output approximations)

@ Offline/Online computational procedures (very extensive and parameter
independent Offline stage / inexpensive Online calculations for new 1/0

evaluation)

S SISSA
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Methodology
°

The “Game”

@ ( )”: “truth” finite element — to be accelerated

@ ( )y : reduced basis — the accelerator
* Input parameter: U (geometry, physical properties, ... )
* Output: s(tbu) ~ s (tp) ~  sy(tip)

—— ——

finite element reduced basis
% Input-Output evaluation: w— s (t; 1) — sy(t; )

v

@ Offline: very expensive pre-processing

@ Online: extremely fast (reduced basis) input-output valuation

. S (4.
po— sn(t; 1) - Ay (tiu)
—— ——
reduced basis output reduced basis error bound

such that ( certification)

N
s (tp) € [sn(tip) — AR (i), sn(t; ) + AR (¢ 1)]
w—/ )
“truth” finite element output reduced basis “error bar’ *s\gsn)

<
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Methodology
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Heat Conduction: Problem Formulation

Steady Heat Conduction Unsteady Heat Conduction

Given 11 € 2 C RP, we evaluate Given € 2 C RP, we evaluate
. .
so(u)=/ uo (i) so(/.l):/ (h(t)/ uo(t;/.t)> dt
Bor 0 B,
where uo(1t) satisfies where u,(t; 1) satisfies for t € [0, tf]
du, ) < du, > .
— Kojj=— | =g(t)fo inQ
789 (Ko,-,-j”" ) _f in Q) It I\, g(t)fo o(H)
Xoi Xoj u(t=0;p) =u® in Qo(n)
+BCs on dQ,(1) +BCs  on 99, (k)

@ The u—dependent problem has to be formulated on a u—independent reference
domain Q

@ A domain decomposition of Q,(t) and proper piecewise-affine mappings are
automatically built by rbMIT®

@ The problem is then reduced to a parametric PDE on reference domain:
geometric variations are now captured by the coefficients of the equation
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Methodology
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Heat Conduction: Finite Element Discretization

FE discretization (Steady case) Semi-discrete FE discretization (Unsteady case)

Given j € 2 C RP, we evaluate Given u € 2 c RP, we evaluate
S (1) = (U7 ()T {u ()} s = [ (Ao ) (" n)) e
where {u”"} e R satisfies where u”’ (t;u) € R satisfies for t € (0, tf]
M ()] {0 (£ )} + K ()] {u” (£ 1)} = g(£){F"}
N u _ (N
K" ()Hu” (1)} = {F" (u)} with u (¢ = 0;1) = ug” J

@ The dimension of the FE approximation .4 is sufficiently large so that the FE
output s (i) is indistinguishable from the exact output s(u) at the accuracy
level of interest

@ The matrix [K¥'(u)] is “affine” in the parameter u, by which we mean
Q
(K" ()] =}, Oq(w)[K']
q=1

where for g=1,...,Q, the ©4: 2 — R are (typically very smooth) p-dependent
functions, and the [K{] are p-independent matrices

@ The affine-parameter decomposition is crucial to the computational performance 1 ‘,)

SISSA

of the Offline-Online procedure (but it may be relaxed)
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Methodology
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Heat Conduction: Reduced Basis Approximation

RB formulation (Steady case) § RB formulation (Unsteady case)

Given U € 9, we evaluate Given U € 9, we evaluate
tf
= h(){Ln} T {un(t; dt
e ) sn(w) = [ (MO{Lw} {un(e)})
where {upy(t;u)} satisfies

J
(K ()] {un (1)} = {Fu} J;‘bj(.u)[MjN]{UN(t?N)}"‘qg,leq(#)[KqN]{"N(t?ﬂ)}:g(t){FN}

where {uy(u)} satisfies

@ Snapshot FEM solutions with u € Sy = {u?,...,uN},1 < N < Npax span a
subspace

Wi/ =span{u” (u"),1 < n< N} =span{{;", 1 < n< N}
@ Reduced Basis formulaion is obtained by a Galerkin projection on W,'VW
o [Zy]=[zZ7]= (& M- {&x ] is the orthonormalized—snapshot .4 x N matrix
@ The following affine representations for stiffness and mass matrices is used:
{Lv}=[za]" (L"), (=12 {F"), [Kn(w)]=[Za]T K" (1)][Z4]
Konl = [ZN]T K NZN)1<9< Q. [Min]=[Zn]T M ][Zn] 1 <5< Gl
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Methodology
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Heat Conduction: RB Error Estimation

A posteriori error estimator is a certificate of fidelity that rigorously bounds the error
in the RB prediction relative to the highly accurate truth finite element solution

s (1) — sn(u)| < Aj (1) = (1) /a'p (1)

o £2(u)={R"}T[Y"] Y{R”} is the square of the dual norm of the residual
vector
{R7y = {F"} — K" (Zn]{un(1)}
o [Y]=[K" (@)] for some W€ 2

@ oi} () is a lower bound for the discrete coercivity constant (SCM method)

V.

Unsteady case

7 () ()| < A1) = ([ reoae) ([ sz(t;u)dt)>1/2

o o8 ={L"}T[Y”"] Y{L”} = square of the dual norm of the output vector L-*
o £2(t;u) = {R"}YT[Y] H{R"} = square of the dual norm of the residual vector

v
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rbMIT software package

The rbMIT software package

@ The rbMIT® software package implements in Matlab® all general RB algorithms

@ The user must describe the problem. The input can be separated into three parts:

The User Input

@ geometry: Q,(u) is defined by providing points coordinates, straight/curvy edges

describing all regionsand regions QX (1)

@ material properties: coefficients are provided for differential operator in each
region QX(u) and for boundary conditions.

@ parameter control and settings: parameter domain 2, reference parameters and

other RB information (e.g. Nmax)
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rbMIT software package

The rbMIT software package

@ The rbMIT® software package implements in Matlab® all general RB algorithms

@ The user must describe the problem. The input can be separated into three parts:

The User Input

@ geometry: Q,(u) is defined by providing points coordinates, straight/curvy edges

describing all regionsand regions QX (1)

@ material properties: coefficients are provided for differential operator in each
region QX(u) and for boundary conditions.

@ parameter control and settings: parameter domain 2, reference parameters and
other RB information (e.g. Nmax)

@ The rbMIT® Software architecture can be divided into three steps:

* the Problem Formulation Step ( “Instructor/Lecturer” level)
* the RB Offline Step (“Instructor” level)
* the RB Online Step (“Student” level)
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rbMIT software package

Problem Formulation, Offline and Online Steps

The Problem Formulation Step

@ Domain Decomposition and geometric transformations are built: (coupled with
material input properties) coefficients ©,4(u) are generated for each sub-domain

@ A FE mesh is generated and discrete FE stiffness matrices and vectors are
assembled for each sub-domain (and then combined) to form the p-independent

components
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rbMIT software package

Problem Formulation, Offline and Online Steps

The Problem Formulation Step

@ Domain Decomposition and geometric transformations are built: (coupled with
material input properties) coefficients ©,4(u) are generated for each sub-domain

@ A FE mesh is generated and discrete FE stiffness matrices and vectors are
assembled for each sub-domain (and then combined) to form the p-independent

components
4

The RB Offline Step

@ RB parameter sample set Sy, and [Zy, ] are obtained (greedy algorithm)

@ {Fpn.ctr [Kgnmax] are saved into a “Online Database” to be used Online

N
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rbMIT software package

Problem Formulation, Offline and Online Steps

The Problem Formulation Step

@ Domain Decomposition and geometric transformations are built: (coupled with
material input properties) coefficients ©,4(u) are generated for each sub-domain

@ A FE mesh is generated and discrete FE stiffness matrices and vectors are
assembled for each sub-domain (and then combined) to form the p-independent
components

”
The RB Offline Step

@ RB parameter sample set Sy, and [Zy, ] are obtained (greedy algorithm)

@ {Fp,..} [Kgnma] are saved into a “Online Database” to be used Online
o

The RB Online Step

@ Given u € 2, the RB Online Evaluator returns output prediction and error bound

Online RB (probname, (I, outputname, ...): w— syl (1), Aj(p)

@ The RB Visualizer renders the relevant field variable and provides the error bound

Vis_RB (probname, [): pw—Q, uyl (x;u) for all x in Qq(u)
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rbMIT software package

Users' Interface

Example of rbUfile for User Problem Formulation

% rbMIT Software Copyright MIT 2006-09

% DBP Huynh, NC Nguyen, AT Patera, G Rozza

probname = 'Tfin';

points = '[0,0; 1/2,0; 1/2,3/5; 3/20,3/5; 0,3/5; 3/20,3/5+mu2/2;

3/20,3/5+mu2; 0,3/5+mu2; 0,3/5+mu2/2]';

edge = [1,2;2,3;3,4;4,574,6;6,7;7,8;8,9;9,5;5,11;

geometry{l} = [1,2,3,4,10];

geometry{2} = [4,5,6,7,8,9]1;

gflag = [1,1];

muref = [.1,4,1];

mu_min = [.01,2,1];

mu_max = [0.5,8,10];

mu_bar = [.1,4,11;

kappa{l} = '[mu3, 0, 0; 0, mu3, 0; 0, 0, 0] ;
kappa{2} = '[1, 0, 0; 0, 1, 0; 0O, O, O] ;
dirichlet = '[1,0; 2,1; 4,01 ;

nload = '[r3,0,0,1; 5, mul,0,0;6,mul,0,0]" ;
outputname = 'basetemp’ ;

oload="[1,2]";

st

SIS
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rbMIT software package

Users' Interface

Example of rbUfile for User Problem Formulation

% rbMIT Software Copyright MIT 2006-09

% DBP Huynh, NC Nguyen, AT Patera, G Rozza

probname = 'Tfin';

points = '[0,0; 1/2,0; 1/2,3/5; 3/20,3/5; 0,3/5; 3/20,3/5+mu2/2;

3/20,3/5+mu2; 0,3/5+mu2; 0,3/5+mu2/2]';

° Geometry edge = [1,2;2,3;3,4;4,5;4,6;6,7;7,8;8,9;9,5;5,11;
geometry{l} = [1,2,
geometry{2} = [4,5,
gflag = [1,1]

7

muref = [.1,4,1];

mu_min = [.01,2,1];

mu_max = [0.5,8,10];

mu_bar = [.1,4,1];

kappa{l} = '[mu3, 0, 0; 0, mu3, 0; 0, O, 01" ;
kappa{2} = '[1, 0, 0; 0, 1, 0; O, O, 0] ;
dirichlet = '[1,0; 2,1; 4,0]";

nload = '[(3,0,0,1; 5, mul,0,0;6,mul,0,0]1" ;
outputname = 'basetemp’ ;

oload="[1,2]";

SIS
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rbMIT software package

Users' Interface

Example of rbUfile for User Problem Formulation

% rbMIT Software Copyright MIT 2006-09

% DBP Huynh, NC Nguyen, AT Patera, G Rozza

probname = 'Tfin';

points = '[0,0; 1/2,0; 1/2,3/5; 3/20,3/5; 0,3/5; 3/20,3/5+mu2/2;

3/20,3/5+mu2; 0,3/5+mu2; 0,3/5+mu2/2]"';

° Geometry edge = [1,2;2,3;3,4;4,5;4,6;6,7;7,8;8,9;9,5;5,11;
geometry{l} = [1,2,
geometry{2} = [4,5,
gflag = [1,1]

7

muref = [.1,4,1];
mu_min = [.01,2,1];
° ! 2,175
Parameters o mex = [0.5.8.10);
mu_bar = [.1,4,1];
kappa{l} = '[mu3, 0, 0; 0, mu3, 0; 0, 0, 01" ;
kappa{2} = '[1, 0, 0; 0, 1, 0; O, O, 0] ;
dirichlet = '[1,0; 2,1; 4,0]" ;
nload = '[(3,0,0,1; 5, mul,0,0;6,mul,0,0]1" ;
outputname = 'basetemp’ ;
oload="[1,2]"; >
e
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rbMIT software package

Users' Interface

Example of rbUfile for User Problem Formulation

g ———— rbMIT Software Copyright MIT 2006-09 = —-——--

$ - DBP Huynh, NC Nguyen, AT Patera, G Rozza —-—-------—
probname = 'Tfin';

points = '[0,0; 1/2,0; 1/2,3/5; 3/20,3/5; 0,3/5; 3/20,3/5+mu2/2;

3/20,3/5+mu2; 0,3/5+mu2; 0,3/5+mu2/2]"';
° Geometry edge = [1,2;2,3;3,4;4,5;4,6;6,7;7,8;8,9;9,5;5,11;
geometry{1} = [1,2,3,4,10];

geometry{2} = [4,5,6,7,8,9];

gflag = [1,1]

muref = [.1,4,1];
o Parameters mu_min = [.01,2,1];
mu max = [0.5,8,10];
mu_bar = [.1,4,1];
kappa{l} = '[mu3, 0, 0; 0, mu3, 0; 0, 0, 071" ;
° PDE/BCS kappa{2} = '[1, 0, 0; 0, 1, 0; 0, 0, 01" ;
dirichlet = '[1,0; 2,1; 4,0]";
nload = '[3o0,0,1; 5, ma1,0,0;6,mul,0,0]" ;
outputname = ‘'basetemp’ ;
oload="[1,2]"; N
wd)
SISSA
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rbMIT software package

Users' Interface

Example of rbUfile for User Problem Formulation

& ———— rbMIT Software Copyright MIT 2006-09 = -—-——--
§ ———————— DBP Huynh, NC Nguyen, AT Patera, G Rozza ——--——---—-
probname = 'Tfin';
points = '[0,0; 1/2,0; 1/2,3/5; 3/20,3/5; 0,3/5; 3/20,3/5+mu2/2;
3/20,3/5+mu2; 0,3/5+mu2; 0,3/5+mu2/2]";
° Geometry edge = [1,2;2,3;3,4;4,5;4,6;6,7;7,8;8,9;9,5;5,11;
geometry{l} = [1,2,3,4,10];
geometry{2} = [4,5,6,7,8,9];
gflag = [1,1];
muref = [.1,4,1];
o Parameters ma_min = [.01,2,11;
mu max = [0.5,8,10];
mu_bar = [.1,4,11;
kappa{l} = '[mu3, 0, 0; 0, mu3, 0; 0, 0, 01" ;
kappa{2} = '[1, 0, 0; O, 1, 0; 0, O, O]" ;
o PDE/BCs o
dirichlet = '[1,0; 2,1; 4,0]";
nload = 'rs3,o0,0,1; 5, mul,0,0;6,mul,0,01" ;
° Output outputname = 'basetemp’ ;

oload="[1,2]";

)

5issA
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rbMIT software package

Problem Formulation, Offline and Online Step

@ Example of geometry and field variable visualizations provided by rbMIT package

— —s
asl asf as-
b sf ik
P
st st 35l
E
b b sk
25 25 25
of 2f oF
o
15k sk sk
7
i+ s i1
os- osf- os-
'
of of of
0 R L
o 0z 04 o 0z 04 0 0z 04 0 0z 04
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Ilustrative worked examples
[ lo]e}

The Thermal Fin problem

Engineeristic aspects
@ Heat sink designed for thermal management of high-density electronic
components
@ Shaded domain due to assumed periodicity and symmetry (multi-fin sink)
@ Flowing air is modelled though a simple convection HT coefficient: to compute

temperature at the base of the spreader

Efinl | [

d

per

base/spreader

1 = Bi = hcdper/Riin Biot number  p; € [0.01,0.5]
uw=L= l:/ape, nondimensional fin height > € [2,8]
U3 = K = Kyp/Kein spreader-to-fin conductivity ratio sz € [1,10]
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Ilustrative worked examples
(o] lo}

The Thermal Fin problem

@ Modeling: temperature u,(1t) over Q,(1) satisfies a steady conduction equation

@ Output: average temperature over the base of the spreader (component to be
cooled, being the hottest location in the system)

%o

. o)
2 ({ 3 :|3xo D(u)> in Q1

0 U3 Loz
RS Tys Lo
1 0 9 . . A2
(|5 2| mew) -0 nmun  fusmpzin) e
(S —
Kgu
3 3
no,‘Kgfj%(ﬂ) =1 only; (%,g) Ty Too
NoiKy; gxu“ (u)+(p1)uo =0 on g =To5Ulge (0 3\ ‘(1 g) Lot Loy
3 '5) 2’5 #4
NoiKojj5—— Ixg uo(”) - on r\(rol Urf\’) (0,0) J(;,Q) Fm‘o?é??
y ol

3
sant)

Sissa

output:  Toa(l) = 2/ u
rol

v
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Ilustrative worked examples
ooe

The Thermal Fin problem

Approximation property % Reduction of 400:1 in linear system

# of mesh nodes .4/ 4198 dimension
# of RB functions N ~ 10

*

Online evaluation requires only
5—6% of the FEM cpu cost

Reduced Basis vs Finite Elements

RB online 0.13s (N=7) us us " . "
evaluation time 0.15s (N =13) o s -~
FEM solution u — s’ (1) 1.96s : | (ER s
14| 26
a 0.5 a 05

06
0.4
0.2

0 0
2 [ 05

[

01 02 03 0.4 05
1

Figure: RB temperature field for different choices of parameters
1=(05.2 1), p=(05, 2. 5), = (0.01, 2, 10). et

Figure: RB output and RB error bars — defined as the interval

[sN(u)—Afv(,u).sN(u)+Afv(u)] — as a function of iy for
Hp =2, u3=1and N=6.

A. Manzoni, G. Rozza rbMIT: Heat Transfer examples



Ilustrative worked examples

@00

The Delamination Crack problem

Engineeristic aspects

@ Analysis of the transient evolution of the temperature field near the surface of a
Fiber-Reinforced-Polymer (FRP) Concrete (C) slab

@ Application of transient conduction to real-time non-destructive crack detection

@ Dependence of temperature field evolution on material /geometric
inhomogeneities

heat flux )
§494664488984%88884% 1
FRPlayer | 5 o fene Gene
— Yiaa —IX dotaminaton T
concrete slab :

1 = Waer / diEx nondim. delamination crack width  p; €[0.01,1]
o = dirp/dim3x nondim. crack location (FRP layer thickness) € [0.1,1]

Uz =k = Kprp/Kc  ratio of FRP/Concrete thermal conductivities sz € [0.4,1.8]

bl
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Ilustrative worked examples
(o] o}

The Delamination Crack problem

@ Modeling: unsteady heat equation for temperature uo (1) over Q,(1) X [0, tf]

@ Output: integral of average temperature of the FRP layer over time interval [0, tf]

duo () a 10 ) _ . 1 (0,1 +p2) (3,1 + p2)
=l — u =0 inQ
at Ixoi 0 1 9% 0(“’) o(“’)v @2+ D)
— B8 2
Koi S IV Y TR R
0 4 y
dpl) _ & ( o 2 ,Uo(li)) =0 inQ%(n) (3/2 - 1.1)
* 0 us * (0,0) (3,0)
| —
Kg,'j ************ Toto------------ I
Tos Qg Tou

up(t=0)=0 in Q1) - r
uo(t)=0 on o1 Fosa—%—e—‘“h»ro%

9 Tos Toq
Noi Kgu gf(((” £ — g(t) onTo1o Toiz o Tz
""’K"’Ja uo(u)_ on M\ (Fo1Ul610) To1
w

output: s(i) = iff{ <h(t)fﬂg uo(t;/.t)> dt

o’
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Ilustrative worked examples
ooe

The Delamination Crack problem

155

Approximation property

# of mesh nodes ./ 1912 ‘ os
# of time steps 50 o Si
# of RB functions N 25 -

* Reduction of 80:1 in linear system —
dimension (at each time step) '

35

2.5)

15

0.2 0.4 0.6 08 1
H

Flgu re: RB output and RB error bars — defined as the
interval [sp (1) — AR, (1), spy (1) + AR (1)] — as a function of yy
for pp =0.2, g =1 and N =25.

FIgU re: RB temperature field for different choices of
parameters: 1 = (0.5, 0.5, 0.4), u = (0.5, 0.5, 1.8),
u=(1, 05, 1.8).

Rozza rbMI

A. Manzoni

Heat Transfer examples



References

@ A. Quarteroni, G. R. and A. M., 2011. Certified Reduced Basis Approximation for Parametrized PDEs and
Applications. J. Math. Industry, 1:3.

@ G. R, D.B. P. Huynh and A. T. Patera, 2008. “Reduced basis approximation and a posteriori error
estimation for affinely parametrized elliptic coercive PDEs: Application to transport and continuum
mechanics”, Arch. Comput. Methods Engrg., 15 (3), pp. 229-275.

@ A.T. Patera and G. Rozza. Reduced Basis Approximation and A Posteriori Error Estimation for
Parametrized PDEs. to appear in MIT Pappalardo Graduate Monographs in Mechanical Engineering, 2009.
(©Massachusetts Institute of Technology, Version 1.0.

@ A. M., A. Quarteroni and G. R., 2012. Computational reduction for parametrized PDEs: strategies and
applications. Milan J. Math. 80, pp. 283-309.

@ G. R, C. N. Nguyen, D. B. P. Huynh, and A. T. Patera, 2009. Real-time reliable simulation of heat transfer
phenomena, Proceedings of HT2009, 2009 ASME Summer Heat Transfer Conference, S. Francisco, USA,
paper HT 2009-88212.

@ M. Grepl, A.T. Patera, 2005. A posteriori error bounds for reduced-basis approximations of parametrized
parabolic partial differential equations. ESAIM: Math. Model. Numer. Anal., 39(1):157-181.

@ M. Grepl, Y. Maday, N.C. Nguyen, and A.T. Patera, 2007. Efficient reduced-basis treatment of nonaffine
and nonlinear partial differential equations. ESAIM: Math. Model. Numer. Anal., 41(3):575-605.

@ B. Haasdonk and M. Ohlberger, 2008. Reduced basis method for finite volume approximations of
parametrized linear evolution equations. ESAIM: Math. Model. Numer. Anal., 42:277-302.

@ D. B. P. Huynh, C. N. Nguyen, G. R. and A. T. Patera, 2007-09. Documentation for rbMIT Software.
http://augustine.mit.edu/methodology/ ©MIT, Tech. Lic. Office 12600, Cambridge, MA, US.

A. Manzoni, G. Rozza rbMIT: Heat Transfer examples




Methodology details
@00

Steady Heat Conduction: Formulation (1/2)

Scalar problem formulation

Assumptions:

Given u € 2 C RP, we evaluate the output

so(l) = /BaLuow)

where the temperature field u, (1) satisfies % rk >0 (reaction) and f¥

* K‘C,;U is a 2x2 SPD tensor

conductivity

(field) are scalars

dug .
o (W% ) +rbu =t in Qo)

Uo = Upp on I'oD

* go1 is the Robin coefficient,
Juo(u) go2 is the “sink” field
Uo
nomgij axo,fl +801(to(1) —g02) = o3 0n Ton value, and g3 is the flux

v

We must formulate our p—dependent problem on a p—indep. reference domain Q:

@ A decomposition of the domain Qo (i) in subdomains Q&(u), 1 < k < Kpeg is
automatically built

@ A piecewise-affine mapping which maps the u-dependent Q,(u) = Usz*’l Qk(u) to
a reference p-independent Q= Q(u,.) = Ufzgl QF is built

@ The problem is reduced to a parametric PDE on reference domain: geometric
variations are now captured by the coefficients of the equation
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Steady Heat Conduction: Formulation (2/2)

Finite Element discretization . .
Finite Element Assumptions:

Given pL € 2 C RP, we evaluate

* [K?(u)] € RV**: FE stiffness
s7 () = {17 ()} {u” (1)} matrix {F" (1)} € R”: force vector

N N
where the FE temperature solution {L7 (1)} €R7: output vector

{u} e R satisfies * [K* ()] is SPD and
{L'A/( )= {F'”/( )} (“compliant”
(K () Hu (1)} = {F" ()} ) probl:n) ! i

@ The dimension of the FE approximation .4 is sufficiently large so that the FE
output s (i) is indistinguishable from the exact output s(it) at the accuracy
level of interest

@ The matrix [K”"'(u)] is “affine” in the parameter u, by which we mean
Q
K" (W] = Y, Oq(w)[K]
qg=1

where for g=1,...,Q, the ©4: 2 — R are (typically very smooth) p-dependent
functions, and the [K;;V] are p-independent matrices

@ The affine-parameter decomposition is crucial to the computational performance /ﬁ,-@
of the Offline-Online procedure (but it may be relaxed) SIS
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Steady Heat Conduction: Reduced Basis Approximation

@ Snapshot FEM solutions with g € Sy = {u?,...,u"},1 < N < Npax give
Wi = span{u” (1"),1 < n< N} =span{{;",1 < n< N}

RB formulation (Galerkin projection) « [Zn =12 =
Given i € 2, we evaluate the RB output as [{C{V}|\{C,C}] is the
orthonormalized—snapshot
sn () = (Fa} " {un ()} A x N matrix
where the RB coefficient N—vector
{uny(u)} satisfies * [KN(ﬁ)] j
(Zn]" [K" (w)][Zn]
[Kn (1) {un(p)} = {Fn}- ) « {Fn}=[ZnT{F"}

@ With affine form of [Ky(ut)] the RB problem becomes
22, 0q(1)[Kqnl{un(p)} = {Fn} where the [Kqn] = [Zy]T[K, 1[Zn] are
parameter-independent N x N matrices

Offline stage: compute the {u”"(1")}, 1 < n < Nmax, form the matrix [Zy, ]
and then form and store {Fy,_ } and [Kqp,...]

Online stage: for a given u and N retrieve the pre-computed [Kqy] and {Fp},
form [Kpy(u)], solve the N x N system to obtain {uy(u)}, and evaluate sy
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Unsteady Heat Conduction: Formulation

Problem formulation

Given L€ 9 C RP, we evaluate the output

Assumptions:

tr
s(p) :/0 (h(t)/B U(t;ﬂ)) dt * Same as before on K‘j‘ rk, £k
L
where the temperature field u(t; 1) solves * h(t),g(t) € L*((0, t7]) are the
output and input (control)
o) ) k 9 _ k
3t~ Tx,—( Kij 3:) +rku=g(t)f in Q(u) functions of t

u(t=0;u)=uwup in Q(u)

* g1, &, and g3 may depend
—+boundary conditions on JdQ2(u)

on t as well
Semi-discrete Finite Element approximation
FE Assumptions: Given u € 2 C R”, we evaluate
tf
* [M7(u)] FE mass matrix, s (w) :/0 (h(t){LW}T{U‘M(tiﬂ)}) dt
SPD and affine in the y P
parameter: [M* ()] = r/here t(P(\)e FE temperature vector u”” (t; ) € R” satisfies
or t € (0,¢
£/ @i (0)M;'] 0l P .
. v MT ()™ (£ )} + KT ()H{u” (£0)} = g(){F" }
* Trapezoidal rule for s (i) \
with initial condition u”" (t = 0; 1) = ug" ) &
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Unsteady Heat Conduction: Reduced Basis Approximation

@ For generation of RB spaces WNA/ = span{C;f/,l <n< N}, 1<N< Npa, a
POD-Greedy sampling procedure combines spatial snapshots in time and u

% POD in t captures the causality associated with the evolution equation
* Greedy in u treats efficiently more extensive ranges of parameter variation

Reduced Basis formulation (Galerkin projection)

Given U € 9, we evaluate the RB output as
tf
sw() = [ (L} (un(ein)} ) e

where {up(t; 1)} satisfies the evolution equation

J Q
ziq)j(ﬂ)[MjN]{ﬁN(t?ﬂ)} + Zleq(u)[KqN]{UN(t;u)} =g(t){Fn}
J= 9=

@ The following affine representations for stiffness/mass matrices is used:
{tn}=[2a]" (L") (Pl =20 {F"}
[Kon] = [Zn]T[KNZN) 1< a<Q, M) =[Zn]T M ][Zn], 1< < J

)

SISSA
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@ Offline-Online procedure is straightforward and very similar to the steady case
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Steady/Unsteady Heat Conduction: RB Error Estimation

A posteriori error estimator is a certificate of fidelity that rigorously bounds the error
in the RB prediction relative to the highly accurate truth finite element solution

s (1) — sn ()| < AR (1) = (1) /oich (1)

@ £2(u) ={R"}T[Y"]"Y{R”} = square of the dual norm of the residual vector

{R"} = {F"} — K" (WZn]{un(1)}
@ ok (1) is a lower bound for the discrete coercivity constant (SCM method)

v

Unsteady case

|7 (£, 1) — s (t, )| < ARy (L) = (“) ((/ h2(t)dt>(/Otfez(t;u)dt)>l/2

@ of = {L"}T[Y/]71{L”} = square of the dual norm of the output vector L
o £2(t;u) = {R"}YT[Y*] 1{R"} = square of the dual norm of the residual vector

v

The computation of £2(u) readily admits an Offline-Online strategy: all the

underbraced matrix-matrix or matrix-vector products can be pre-computed Offline

v
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