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Overview and Methodology

Overview

Certified Reduced Basis method and associated software package rbMIT †

Problem Formulation and Reduced Basis approximation

Examples of steady and unsteady conduction worked problems

a thermal fin

a thermal analysis of a delamination crack

rbMIT Methodology

Input parameter (problem data) and desired outputs (thermal quantities)

Computational stages

Offline (“Instructor” level)

Online (“Lecturer/Student”level ): rapid and reliable prediction of outputs

and rigorous error bounds

†
available for educational and academic use at http://augustine.mit.edu
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Motivation

Heat Transfer Education:

classical approaches such as finite element method are often too slow and low

order heuristic approaches are often unreliable

Goal: to achieve the accuracy and reliability of a high fidelity approximation but at

greatly reduced cost of a low order model

Pedagogical prospects:

interactive in-class visualization and parametric exploration

rapid assessment of classical engineering approximations and interpretations

more realistic examples in homework assignment and design projects

collection/catalogue of many worked problems, available on line ∗

Way: certified Reduced Basis Method for rapid and reliable prediction of engineering

outputs associated with parametrized PDEs

rapid = minimiziation of the marginal cost in I/O evaluation

reliable = error bounds of input/output evaluation or field variable

useful in real-time/interactive or many queries context such as robust parameter

estimation, design, optimization and control

∗ http://augustine.mit.edu
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Motivation

Input and Output

Input parameter: µ ∈D ⊂ Rp → geometry, material prop., BCs, sources, ...

Output of interest: s(µ) = `(u(µ)) → related to temperature or fluxes

Field variable: temperature u(µ) → satisfies a µ-parametrized PDE

Rapidly convergent global reduced basis (RB) approximations (Galerkin projection

onto a space spanned by solution of governing PDE at N selected µ1, . . . ,µN )

Rigorous a posteriori error estimation procedures (inexpensive yet sharp bounds

for the error in the RB field-variable and output approximations)

Offline/Online computational procedures (very extensive and parameter

independent Offline stage / inexpensive Online calculations for new I/O

evaluation)
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The “Game”

( )N : “truth” finite element – to be accelerated

( )N : reduced basis – the accelerator

? Input parameter: µ (geometry, physical properties, . . . )

? Output: s(t; µ) ≈ sN (t; µ)︸ ︷︷ ︸
finite element

≈ sN (t; µ)︸ ︷︷ ︸
reduced basis

? Input-Output evaluation: µ → sN (t; µ)→ sN (t; µ)

Offline: very expensive pre-processing

Online: extremely fast (reduced basis) input-output valuation

µ → sN (t; µ)︸ ︷︷ ︸
reduced basis output

→ ∆s
N (t; µ)︸ ︷︷ ︸

reduced basis error bound

such that ( certification)

sN (t; µ)︸ ︷︷ ︸
“truth′′ finite element output

∈ [sN (t; µ)−∆s
N (t; µ),sN (t; µ) + ∆s

N (t; µ)]︸ ︷︷ ︸
reduced basis“error bar ′′
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Heat Conduction: Problem Formulation

Steady Heat Conduction

Given µ ∈D ⊂ RP , we evaluate

so (µ) =
∫

Bo L

uo (µ)

where uo (µ) satisfies − ∂

∂xo i

(
κo ij

∂uo

∂xo j

)
= fo in Ωo (µ)

+BCs on ∂Ωo (µ)

Unsteady Heat Conduction

Given µ ∈D ⊂ RP , we evaluate

so (µ) =
∫ tf

0

(
h(t)

∫
BL

uo (t; µ)

)
dt

where uo (t; µ) satisfies for t ∈ [0,tf ]
∂uo

∂ t
− ∂

∂xo i

(
κo ij

∂uo

∂xo j

)
= g(t)fo in Ωo (µ)

uo (t = 0; µ) = u0 in Ωo (µ)

+BCs on ∂Ωo (µ)

The µ–dependent problem has to be formulated on a µ–independent reference

domain Ω

A domain decomposition of Ωo (µ) and proper piecewise-affine mappings are

automatically built by rbMIT c©

The problem is then reduced to a parametric PDE on reference domain:

geometric variations are now captured by the coefficients of the equation
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Heat Conduction: Finite Element Discretization

FE discretization (Steady case)

Given µ ∈D ⊂ RP , we evaluate

sN (µ) = {LN (µ)}T {uN (µ)}

where {uN } ∈ RN satisfies

[KN (µ)]{uN (µ)}= {FN (µ)}

Semi-discrete FE discretization (Unsteady case)

Given µ ∈D ⊂ RP , we evaluate

sN (µ) =
∫ tf

0

(
h(t){LN }T {uN (t; µ)}

)
dt

where uN (t; µ) ∈ RN satisfies for t ∈ (0,tf ]

[MN (µ)]{u̇N (t; µ)}+ [KN (µ)]{uN (t; µ)}= g(t){FN }

with uN (t = 0; µ) = uN
0

The dimension of the FE approximation N is sufficiently large so that the FE

output sN (µ) is indistinguishable from the exact output s(µ) at the accuracy

level of interest

The matrix [KN (µ)] is “affine” in the parameter µ, by which we mean

[KN (µ)] =
Q

∑
q=1

Θq(µ)[KN
q ]

where for q = 1, . . . ,Q, the Θq : D → R are (typically very smooth) µ-dependent

functions, and the [KN
q ] are µ-independent matrices

The affine-parameter decomposition is crucial to the computational performance

of the Offline-Online procedure (but it may be relaxed)
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Heat Conduction: Reduced Basis Approximation

RB formulation (Steady case)

Given µ ∈D , we evaluate

sN (µ) = {FN}T {uN (µ)}

where {uN (µ)} satisfies

[KN (µ)]{uN (µ)}= {FN}

RB formulation (Unsteady case)

Given µ ∈D , we evaluate

sN (µ) =
∫ tf

0

(
h(t){LN}T {uN (t; µ)}

)
dt

where {uN (t; µ)} satisfies
J

∑
j=1

Φj (µ)[Mj N ]{u̇N (t; µ)}+
Q

∑
q=1

Θq(µ)[Kq N ]{uN (t; µ)}=g(t){FN}

Snapshot FEM solutions with µ ∈ SN = {µ1, . . . ,µN},1≤N ≤Nmax span a

subspace

W N
N = span{uN (µ

n),1≤ n ≤N}= span{ζ N
n ,1≤ n ≤N}

Reduced Basis formulaion is obtained by a Galerkin projection on W N
N

[ZN ]≡ [ZN
N ] = [{ζ N

1 }| · · · |{ζ
N
N }] is the orthonormalized–snapshot N ×N matrix

The following affine representations for stiffness and mass matrices is used:

{LN}= [ZN ]T {LN }, {FN}= [ZN ]T {FN }, [KN (µ)] = [ZN ]T [KN (µ)][ZN ]

[Kq N ] = [ZN ]T [KN
q ][ZN ],1≤ q ≤Q, [Mj N ] = [ZN ]T [MN

j ][ZN ],1≤ j ≤ J
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Heat Conduction: RB Error Estimation

A posteriori error estimator is a certificate of fidelity that rigorously bounds the error

in the RB prediction relative to the highly accurate truth finite element solution

Steady case

|sN (µ)− sN (µ)| ≤∆s
N (µ) = ε

2(µ)/α
N
LB (µ)

ε2(µ) = {RN }T [YN ]−1{RN } is the square of the dual norm of the residual

vector
{RN }= {FN }− [KN (µ)][ZN ]{uN (µ)}

[YN ] = [KN (µ)] for some µ ∈D

αN
LB (µ) is a lower bound for the discrete coercivity constant (SCM method)

Unsteady case

|sN (t,µ)− sN (t,µ)| ≤∆s
N (t,µ) =

σ0

αN
LB (µ)

((∫ tf

0
h2(t)dt

)(∫ tf

0
ε

2(t; µ)dt
))1/2

σ2
0 = {LN }T [YN ]−1{LN } = square of the dual norm of the output vector LN

ε2(t; µ) = {RN }T [YN ]−1{RN } = square of the dual norm of the residual vector
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The rbMIT software package

The rbMIT c© software package implements in Matlab R© all general RB algorithms

The user must describe the problem. The input can be separated into three parts:

The User Input

geometry: Ωo (µ) is defined by providing points coordinates, straight/curvy edges

describing all regionsand regions Ωk
o (µ)

material properties: coefficients are provided for differential operator in each

region Ωk
o (µ) and for boundary conditions.

parameter control and settings: parameter domain D , reference parameters and

other RB information (e.g. Nmax)

The rbMIT c© Software architecture can be divided into three steps:

? the Problem Formulation Step (“Instructor/Lecturer” level)

? the RB Offline Step (“Instructor” level)

? the RB Online Step (“Student” level)
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Problem Formulation, Offline and Online Steps

The Problem Formulation Step

Domain Decomposition and geometric transformations are built: (coupled with

material input properties) coefficients Θq(µ) are generated for each sub-domain

A FE mesh is generated and discrete FE stiffness matrices and vectors are

assembled for each sub-domain (and then combined) to form the µ-independent

components

The RB Offline Step

RB parameter sample set SNmax and [ZNmax ] are obtained (greedy algorithm)

{FNmax}, [Kq Nmax ] are saved into a “Online Database” to be used Online

The RB Online Step

Given µ ∈D , the RB Online Evaluator returns output prediction and error bound

Online RB (probname, µ, outputname, . . .): µ → sN
N (µ), ∆s

N (µ)

The RB Visualizer renders the relevant field variable and provides the error bound

Vis RB (probname, µ): µ →Ω, uN
N (x ; µ) for all x in Ωo(µ)
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rbMIT Users’ Interface

Example of rbUfile for User Problem Formulation

Geometry

Parameters

PDE/BCs

Output
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Problem Formulation, Offline and Online Steps

Example of geometry and field variable visualizations provided by rbMIT package

Figure: Initial geometry, domain decompostion, FE mesh and RB solution visualization for a thermal fin problem
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The Thermal Fin problem

Engineeristic aspects

Heat sink designed for thermal management of high-density electronic

components

Shaded domain due to assumed periodicity and symmetry (multi-fin sink)

Flowing air is modelled though a simple convection HT coefficient: to compute

temperature at the base of the spreader

Physical and geometrical parametrization

µ1 = Bi = h̃c d̃per/κ̃fin Biot number µ1 ∈ [0.01,0.5]

µ2 = L = L̃/d̃per nondimensional fin height µ2 ∈ [2,8]

µ3 = κ = κ̃sp/κ̃fin spreader-to-fin conductivity ratio µ3 ∈ [1,10]

A. Manzoni, G. Rozza rbMIT: Heat Transfer examples



Outline Methodology rbMIT software package Illustrative worked examples References Methodology details

The Thermal Fin problem

Modeling: temperature uo (µ) over Ωo (µ) satisfies a steady conduction equation

Output: average temperature over the base of the spreader (component to be

cooled, being the hottest location in the system)

− ∂

∂xo i

([
µ3 0

0 µ3

]
︸ ︷︷ ︸

κ1
o ij

∂

∂xo j
uo (µ)

)
= 0 in Ω1

o

− ∂

∂xo i

([
1 0

0 1

]
︸ ︷︷ ︸

κ2
o ij

∂

∂xo j
uo (µ)

)
= 0 in Ω2

o (µ2)

no i κ
1
o ij

∂uo
∂xo j

(µ) = 1 on Γo 1

no i κ
2
o ij

∂uo
∂xo j

(µ) + (µ1)uo = 0 on ΓR = Γo 5 ∪Γ06

no i κo ij
∂

∂xo j
uo (µ) = 0 on Γ\ (Γo 1 ∪ΓR )

output: To av(µ) = 2
∫

Γo 1

uo (µ)

(0(0,, 0)0)
11
22
,, 00

00,,
33
55

11
22
,,
33
55

33
2020

,,
33
55

33
2020

,,
33
55

++
µµ22

22

33
2020

,,
33
55

++ µµ2200,,
33
55

++ µµ22

00,,
33
55

++
µµ22

22
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The Thermal Fin problem

Approximation property

# of mesh nodes N 4198

# of RB functions N ≈ 10

Reduced Basis vs Finite Elements

RB online 0.13s (N = 7)

evaluation time 0.15s (N = 13)

FEM solution µ → sN (µ) 1.96s

0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14

μ1

Figure: RB output and RB error bars — defined as the interval

[sN (µ)−∆s
N (µ),sN (µ) + ∆s

N (µ)] — as a function of µ1 for

µ2 = 2, µ3 = 1 and N = 6.

? Reduction of 400:1 in linear system

dimension

? Online evaluation requires only

5−6% of the FEM cpu cost

Figure: RB temperature field for different choices of parameters:

µ = (0.5, 2, 1), µ = (0.5, 2, 5), µ = (0.01, 2, 10).
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The Delamination Crack problem

Engineeristic aspects

Analysis of the transient evolution of the temperature field near the surface of a

Fiber-Reinforced-Polymer (FRP) Concrete (C) slab

Application of transient conduction to real-time non-destructive crack detection

Dependence of temperature field evolution on material/geometric

inhomogeneities
heat flux

FRP layer

concrete slab

delamination22 ˜̃wwdeldel

˜̃qq((˜̃tt))

˜̃ρρCC,, ˜̃ccCC,, ˜̃κκCC

˜̃ρρFRPFRP,, ˜̃ccFRPFRP,, ˜̃κκFRPFRP

˜̃ddFRFRPP

Physical and geometrical parametrization

µ1 = w̃del/d̃max
FRP nondim. delamination crack width µ1 ∈ [0.01,1]

µ2 = d̃FRP/d̃max
FRP nondim. crack location (FRP layer thickness) µ2 ∈ [0.1,1]

µ3 = κ = κ̃FRP/κ̃C ratio of FRP/Concrete thermal conductivities µ3 ∈ [0.4,1.8]
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The Delamination Crack problem

Modeling: unsteady heat equation for temperature uo (µ) over Ωo (µ)× [0,tf ]

Output: integral of average temperature of the FRP layer over time interval [0,tf ]

∂uo (µ)
∂ t − ∂

∂xo i

([
1 0

0 1

]
︸ ︷︷ ︸

κ1
o ij

∂

∂xo j
uo (µ)

)
= 0 in Ω1

o (µ),

∂uo (µ)
∂ t − ∂

∂xo i

([
µ3 0

0 µ3

]
︸ ︷︷ ︸

κ2
o ij

∂

∂xo j
uo (µ)

)
= 0 in Ω2

o (µ)

uo (t = 0) = 0 in Ωo (µ)

uo (µ) = 0 on Γo 1

no i κ
2
o ij

∂uo (µ)
∂xo j

= g(t) on Γo 10

no i κo ij
∂

∂xo j
uo (µ) = 0 on Γ\ (Γo 1 ∪Γo 10)

output: s(µ) = 1
3µ2

∫ tf
0

(
h(t)

∫
Ω2

o
uo (t; µ)

)
dt

ΓΓoo11

ΓΓoo22

ΓΓoo33

ΓΓoo44ΓΓoo55

ΓΓoo66 ΓΓoo77

ΓΓoo88

ΓΓoo99

ΓΓoo1010

ΓΓoo1111

ΓΓoo1212

ΩΩ22
00

ΩΩ11
00
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The Delamination Crack problem

Approximation property

# of mesh nodes N 1912

# of time steps K 50

# of RB functions N 25

? Reduction of 80:1 in linear system

dimension (at each time step)

0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

μ1

Figure: RB output and RB error bars — defined as the

interval [sN (µ)−∆s
N (µ),sN (µ) + ∆s

N (µ)] — as a function of µ1
for µ2 = 0.2, µ3 = 1 and N = 25.

Figure: RB temperature field for different choices of

parameters: µ = (0.5, 0.5, 0.4), µ = (0.5, 0.5, 1.8),

µ = (1, 0.5, 1.8).
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Steady Heat Conduction: Formulation (1/2)

Scalar problem formulation

Given µ ∈D ⊂ RP , we evaluate the output

so (µ) =
∫

Bo L

uo (µ)

where the temperature field uo (µ) satisfies
− ∂

∂xo i

(
κk

o ij
∂uo (µ)

∂xo j

)
+ rk

o u = f k
o in Ωo (µ)

uo = uo D on Γo D

no i κ
k
o ij

∂uo (µ)
∂xo j

+ go 1(uo (µ)−go 2) = go 3 on Γo N

Assumptions:

? κk
o ij is a 2×2 SPD tensor

conductivity

? rk
o ≥ 0 (reaction) and f k

o

(field) are scalars

? go 1 is the Robin coefficient,

go 2 is the “sink” field

value, and go 3 is the flux

We must formulate our µ–dependent problem on a µ–indep. reference domain Ω:

A decomposition of the domain Ωo (µ) in subdomains Ωk
o (µ), 1≤ k ≤ Kreg is

automatically built

A piecewise-affine mapping which maps the µ-dependent Ω̄o (µ)≡
⋃Kreg

k=1 Ω̄k
o (µ) to

a reference µ-independent Ω̄≡ Ω̄(µ ref)≡
⋃Kreg

k=1 Ω̄k is built

The problem is reduced to a parametric PDE on reference domain: geometric

variations are now captured by the coefficients of the equation
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Steady Heat Conduction: Formulation (2/2)

Finite Element discretization

Given µ ∈D ⊂ RP , we evaluate

sN (µ) = {LN (µ)}T {uN (µ)}

where the FE temperature solution

{uN } ∈ RN satisfies

[KN (µ)]{uN (µ)}= {FN (µ)}

Finite Element Assumptions:

? [KN (µ)] ∈ RN ×N : FE stiffness

matrix {FN (µ)} ∈ RN : force vector

{LN (µ)} ∈ RN : output vector

? [KN (µ)] is SPD and

{LN (µ)}= {FN (µ)} (“compliant”

problem)

The dimension of the FE approximation N is sufficiently large so that the FE

output sN (µ) is indistinguishable from the exact output s(µ) at the accuracy

level of interest

The matrix [KN (µ)] is “affine” in the parameter µ, by which we mean

[KN (µ)] =
Q

∑
q=1

Θq(µ)[KN
q ]

where for q = 1, . . . ,Q, the Θq : D → R are (typically very smooth) µ-dependent

functions, and the [KN
q ] are µ-independent matrices

The affine-parameter decomposition is crucial to the computational performance

of the Offline-Online procedure (but it may be relaxed)
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Steady Heat Conduction: Reduced Basis Approximation

Snapshot FEM solutions with µ ∈ SN = {µ1, . . . ,µN},1≤N ≤Nmax give

W N
N = span{uN (µ

n),1≤ n ≤N}= span{ζ N
n ,1≤ n ≤N}

RB formulation (Galerkin projection)

Given µ ∈D , we evaluate the RB output as

sN (µ) = {FN}T {uN (µ)}

where the RB coefficient N–vector

{uN (µ)} satisfies

[KN (µ)]{uN (µ)}= {FN}.

? [ZN ]≡ [ZN
N ] =

[{ζ N
1 }| · · · |{ζ

N
N }] is the

orthonormalized–snapshot

N ×N matrix

? [KN (µ)] =

[ZN ]T [KN (µ)][ZN ]

? {FN}= [ZN ]T {FN }

With affine form of [KN (µ)] the RB problem becomes

∑
Q
q=1 Θq(µ)[Kq N ]{uN (µ)}= {FN} where the [Kq N ] = [ZN ]T [KN

q ][ZN ] are

parameter-independent N×N matrices

Offline stage: compute the {uN (µn)}, 1≤ n ≤Nmax, form the matrix [ZNmax ]

and then form and store {FNmax} and [Kq Nmax ]

Online stage: for a given µ and N retrieve the pre-computed [Kq N ] and {FN},
form [KN (µ)], solve the N×N system to obtain {uN (µ)}, and evaluate sN
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Unsteady Heat Conduction: Formulation

Problem formulation

Given µ ∈D ⊂ RP , we evaluate the output

s(µ) =
∫ tf

0

(
h(t)

∫
BL

u(t; µ)

)
dt

where the temperature field u(t; µ) solves
∂u
∂ t −

∂

∂xi

(
κk

ij
∂u
∂xj

)
+ rk u = g(t)f k in Ω(µ)

u(t = 0; µ) = u0 in Ω(µ)

+boundary conditions on ∂Ω(µ)

Assumptions:

? Same as before on κk
ij , rk , f k

? h(t),g(t) ∈ L2((0,tf ]) are the

output and input (control)

functions of t

? g1, g2, and g3 may depend

on t as well

FE Assumptions:

? [MN (µ)] FE mass matrix,

SPD and affine in the

parameter: [MN (µ)] =

∑
J
j=1 Φj (µ)[MN

j ]

? Trapezoidal rule for sN (µ)

Semi-discrete Finite Element approximation

Given µ ∈D ⊂ RP , we evaluate

sN (µ) =
∫ tf

0

(
h(t){LN }T {uN (t; µ)}

)
dt

where the FE temperature vector uN (t; µ) ∈ RN satisfies

for t ∈ (0,tf ]

[MN (µ)]{u̇N (t; µ)}+ [KN (µ)]{uN (t; µ)}= g(t){FN }

with initial condition uN (t = 0; µ) = uN
0
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Unsteady Heat Conduction: Reduced Basis Approximation

For generation of RB spaces W N
N = span{ζ N

n ,1≤ n ≤N}, 1≤N ≤Nmax, a

POD-Greedy sampling procedure combines spatial snapshots in time and µ

? POD in t captures the causality associated with the evolution equation

? Greedy in µ treats efficiently more extensive ranges of parameter variation

Reduced Basis formulation (Galerkin projection)

Given µ ∈D , we evaluate the RB output as

sN (µ) =
∫ tf

0

(
h(t){LN}T {uN (t; µ)}

)
dt

where {uN (t; µ)} satisfies the evolution equation

J

∑
j=1

Φj (µ)[Mj N ]{u̇N (t; µ)}+
Q

∑
q=1

Θq(µ)[Kq N ]{uN (t; µ)}= g(t){FN}

The following affine representations for stiffness/mass matrices is used:

{LN}= [ZN ]T {LN }, {FN}= [ZN ]T {FN }

[Kq N ] = [ZN ]T [KN
q ][ZN ],1≤ q ≤Q, [Mj N ] = [ZN ]T [MN

j ][ZN ],1≤ j ≤ J

Offline-Online procedure is straightforward and very similar to the steady case
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Steady/Unsteady Heat Conduction: RB Error Estimation

A posteriori error estimator is a certificate of fidelity that rigorously bounds the error

in the RB prediction relative to the highly accurate truth finite element solution

Steady case

|sN (µ)− sN (µ)| ≤∆s
N (µ) = ε

2(µ)/α
N
LB (µ)

ε2(µ) = {RN }T [YN ]−1{RN } = square of the dual norm of the residual vector

{RN }= {FN }− [KN (µ)][ZN ]{uN (µ)}
αN

LB (µ) is a lower bound for the discrete coercivity constant (SCM method)

Unsteady case

|sN (t,µ)− sN (t,µ)| ≤∆s
N (t,µ) =

σ0

αN
LB (µ)

((∫ tf

0
h2(t)dt

)(∫ tf

0
ε

2(t; µ)dt
))1/2

σ2
0 = {LN }T [YN ]−1{LN } = square of the dual norm of the output vector LN

ε2(t; µ) = {RN }T [YN ]−1{RN } = square of the dual norm of the residual vector

The computation of ε2(µ) readily admits an Offline-Online strategy: all the

underbraced matrix-matrix or matrix-vector products can be pre-computed Offline
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