Outline	Methodology	rbMIT software package	Illustrative worked examples	References	Methodology details

TU Munich, 16-20 September 2013, RB Summer School

rbMIT software library: Heat Transfer Examples

Andrea Manzoni Gianluigi Rozza

release developed at MIT, TLO 12600 (A.T. Patera, D.B.P. Huynh, C.N. Nguyen)

Outline	Methodology	rbMIT software package	Illustrative worked examples	References	Methodology details
Overvie	w and Met	hodology			

Overview

- $\bullet\,$ Certified Reduced Basis method and associated software package rbMIT †
 - Problem Formulation and Reduced Basis approximation
- Examples of steady and unsteady conduction worked problems
 - a thermal fin
 - a thermal analysis of a delamination crack

rbMIT Methodology

- Input parameter (problem data) and desired outputs (thermal quantities)
- Computational stages
 - Offline ("Instructor" level)
 - Online ("Lecturer/Student" level): rapid and reliable prediction of outputs and rigorous error bounds

[†]available for educational and academic use at http://augustine.mit.edu

Outline	Methodology 00000	rbMIT software package	Illustrative worked examples	References	Methodology details
Motiva	tion				

Heat Transfer Education:

• classical approaches such as **finite element method** are often too **slow** and low order heuristic approaches are often unreliable

Goal: to achieve the **accuracy** and **reliability** of a high fidelity approximation but at greatly **reduced cost** of a **low order model**

Pedagogical prospects:

- interactive in-class visualization and parametric exploration
- rapid assessment of classical engineering approximations and interpretations
- more realistic examples in homework assignment and design projects
- collection/catalogue of many worked problems, available on line *

Way: certified Reduced Basis Method for **rapid** and **reliable** prediction of engineering outputs associated with parametrized PDEs

Outline	Methodology 00000	rbMIT software package	Illustrative worked examples	References	Methodology details
Motiva	tion				

Heat Transfer Education:

• classical approaches such as **finite element method** are often too **slow** and low order heuristic approaches are often unreliable

Goal: to achieve the **accuracy** and **reliability** of a high fidelity approximation but at greatly **reduced cost** of a **low order model**

Pedagogical prospects:

- interactive in-class visualization and parametric exploration
- rapid assessment of classical engineering approximations and interpretations
- more realistic examples in homework assignment and design projects
- ${ullet}$ collection/catalogue of many worked problems, available on line ${\ensuremath{^*}}$

rapid = minimiziation of the marginal cost in I/O evaluation reliable = error bounds of input/output evaluation or field variable useful in real-time/interactive or many queries context such as robust parameter estimation, design, optimization and control

* http://augustine.mit.edu

Outline	Methodology	rbMIT software package	Illustrative worked examples	References	Methodology details
Motiva	ation				

Input and Output

- Input parameter: $\mu \in D \subset \mathbb{R}^p \to -$ geometry, material prop., BCs, sources, ...
- Output of interest: $s(\mu) = \ell(u(\mu)) \rightarrow$ related to temperature or fluxes
- Field variable: temperature $u(\mu) \rightarrow \text{ satisfies a } \mu\text{-parametrized PDE}$

프 🖌 🛪 프 🕨

Outline	Methodology 00000	rbMIT software package	Illustrative worked examples	References	Methodology details
Motiva	ation				

Input and Output

- Input parameter: $\mu \in D \subset \mathbb{R}^{p} \to \mathbb{R}^{p}$ geometry, material prop., BCs, sources, ...
- Output of interest: $s(\mu) = \ell(u(\mu)) \rightarrow$ related to temperature or fluxes
- Field variable: temperature $u(\mu) \rightarrow$ satisfies a μ -parametrized PDE

- Rapidly convergent global reduced basis (RB) approximations (Galerkin projection onto a space spanned by solution of governing PDE at N selected µ¹,...,µ^N)
- Rigorous a posteriori error estimation procedures (inexpensive yet sharp bounds for the error in the RB field-variable and output approximations)
- Offline/Online computational procedures (very extensive and parameter independent Offline stage / inexpensive Online calculations for new I/O evaluation)

The "Game" • () \mathscr{N} : "truth" finite element – to be accelerated • () $_{N}$: reduced basis – the accelerator * Input parameter: μ (geometry, physical properties,) * Output: $s(t;\mu) \approx \underbrace{s\mathscr{N}(t;\mu)}_{\text{finite element}} \approx \underbrace{s_{N}(t;\mu)}_{\text{reduced basis}}$ * Input-Output evaluation: $\mu \to s\mathscr{N}(t;\mu) \to s_{N}(t;\mu)$ • Offline: very expensive pre-processing • Online: extremely fast (reduced basis) input-output valuation $\mu \to \underbrace{s_{N}(t;\mu)}_{\text{reduced basis output}} \to \underbrace{\Delta_{N}^{s}(t;\mu)}_{\text{reduced basis error bound}}$ such that (certification) $\underbrace{s\mathscr{N}(t;\mu)}_{\text{"turth" finite element output}} \in \underbrace{[s_{N}(t;\mu) - \Delta_{N}^{s}(t;\mu), s_{N}(t;\mu) + \Delta_{N}^{s}(t;\mu)]}_{\text{reduced basis "error bar"}}$	Outline	Methodology ●○○○○	rbMIT software package	Illustrative worked examples	References	Methodology details			
• () \mathcal{N} : "truth" finite element – to be accelerated • () _N : reduced basis – the accelerator * Input parameter: μ (geometry, physical properties,) * Output: $s(t;\mu) \approx \frac{s^{\mathcal{N}}(t;\mu)}{\text{finite element}} \approx \frac{s_N(t;\mu)}{\text{reduced basis}}$ * Input-Output evaluation: $\mu \rightarrow s^{\mathcal{N}}(t;\mu) \rightarrow s_N(t;\mu)$ • Offline: very expensive pre-processing • Online: extremely fast (reduced basis) input-output valuation $\mu \rightarrow \underbrace{s_N(t;\mu)}_{\text{reduced basis}} \rightarrow \underbrace{\Delta_N^s(t;\mu)}_{\text{reduced basis error bound}}$ such that (certification) $\underbrace{s^{\mathcal{N}}(t;\mu)}_{\text{"truth" finite element output}} \in \underbrace{[s_N(t;\mu) - \Delta_N^s(t;\mu), s_N(t;\mu) + \Delta_N^s(t;\mu)]}_{\text{reduced basis" error bar"}}$	The	"Game"							
* Input parameter: μ (geometry, physical properties,) * Output: $s(t;\mu) \approx \underbrace{s^{\mathscr{N}}(t;\mu)}_{\text{finite element}} \approx \underbrace{s_N(t;\mu)}_{\text{reduced basis}}$ * Input-Output evaluation: $\mu \rightarrow s^{\mathscr{N}}(t;\mu) \rightarrow s_N(t;\mu)$ • Offline: very expensive pre-processing • Online: extremely fast (reduced basis) input-output valuation $\mu \rightarrow \underbrace{s_N(t;\mu)}_{\text{reduced basis}} \rightarrow \underbrace{\Delta_N^s(t;\mu)}_{\text{reduced basis error bound}}$ such that (certification) $\underbrace{s^{\mathscr{N}}(t;\mu)}_{\text{"truth" finite element output}} \in \underbrace{[s_N(t;\mu) - \Delta_N^s(t;\mu), s_N(t;\mu) + \Delta_N^s(t;\mu)]}_{\text{reduced basis"error bar"}}$		● () ^𝒴 : "trut ● () _N : red	h" finite element – to uced basis – <i>the acco</i>	o be accelerated <i>elerator</i>					
* Output: $s(t;\mu) \approx \underbrace{s^{\mathcal{N}}(t;\mu)}_{\text{finite element}} \approx \underbrace{s_{\mathcal{N}}(t;\mu)}_{\text{reduced basis}}$ * Input-Output evaluation: $\mu \rightarrow s^{\mathcal{N}}(t;\mu) \rightarrow s_{\mathcal{N}}(t;\mu)$ • Offline: very expensive pre-processing • Online: extremely fast (reduced basis) input-output valuation $\mu \rightarrow \underbrace{s_{\mathcal{N}}(t;\mu)}_{\text{reduced basis}} \rightarrow \underbrace{\Delta_{\mathcal{N}}^{s}(t;\mu)}_{\text{reduced basis error bound}}$ such that (certification) $\underbrace{s^{\mathcal{N}}(t;\mu)}_{\text{"truth" finite element output}} \in \underbrace{[s_{\mathcal{N}}(t;\mu) - \Delta_{\mathcal{N}}^{s}(t;\mu), s_{\mathcal{N}}(t;\mu) + \Delta_{\mathcal{N}}^{s}(t;\mu)]}_{\text{reduced basis "error bar"}}$		* Input parame	eter: μ	(geometry, physical prop	erties,)				
* Input-Output evaluation: $\mu \to s^{\mathscr{N}}(t;\mu) \to s_N(t;\mu)$ • Offline: very expensive pre-processing • Online: extremely fast (reduced basis) input-output valuation $\mu \to \underbrace{s_N(t;\mu)}_{\text{reduced basis output}} \to \underbrace{\Delta_N^s(t;\mu)}_{\text{reduced basis error bound}}$ such that (certification) $\underbrace{s^{\mathscr{N}}(t;\mu)}_{\text{"truth" finite element output}} \in \underbrace{[s_N(t;\mu) - \Delta_N^s(t;\mu), s_N(t;\mu) + \Delta_N^s(t;\mu)]}_{\text{reduced basis "error bar"}}$		★ Output:	S	$(t;\mu) \approx \underbrace{s^{\mathscr{N}}(t;\mu)}_{\text{finite element}} \approx$	$\underbrace{s_N(t;\mu)}_{\text{reduced basis}}$				
• Offline: very expensive pre-processing • Online: extremely fast (reduced basis) input-output valuation $\mu \rightarrow \underbrace{s_N(t;\mu)}_{reduced basis output} \rightarrow \underbrace{\Delta_N^s(t;\mu)}_{reduced basis error bound}$ such that (certification) $\underbrace{s^{\mathscr{N}}(t;\mu)}_{"truth" finite element output} \in \underbrace{[s_N(t;\mu) - \Delta_N^s(t;\mu), s_N(t;\mu) + \Delta_N^s(t;\mu)]}_{reduced basis "error bar"}$		* Input-Output	t evaluation: μ	$ ightarrow s^{\mathscr{N}}(t;\mu) ightarrow s_{N}(t;\mu)$					
• Online: extremely fast (reduced basis) input-output valuation $\mu \rightarrow \underbrace{s_N(t;\mu)}_{\text{reduced basis output}} \rightarrow \underbrace{\Delta_N^s(t;\mu)}_{\text{reduced basis error bound}}$ such that (certification) $\underbrace{s^{\mathcal{N}}(t;\mu)}_{\text{"truth" finite element output}} \in \underbrace{[s_N(t;\mu) - \Delta_N^s(t;\mu), s_N(t;\mu) + \Delta_N^s(t;\mu)]}_{\text{reduced basis "error bar"}}$		• Offline: very	expensive pre-proces	ssing					
$\mu \rightarrow \underbrace{s_{N}(t;\mu)}_{\text{reduced basis output}} \rightarrow \underbrace{\Delta_{N}^{s}(t;\mu)}_{\text{reduced basis error bound}}$ such that (certification) $\underbrace{s^{\mathcal{N}}(t;\mu)}_{\text{"truth" finite element output}} \in \underbrace{[s_{N}(t;\mu) - \Delta_{N}^{s}(t;\mu), s_{N}(t;\mu) + \Delta_{N}^{s}(t;\mu)]}_{\text{reduced basis "error bar"}}$		• Online: extre	emely fast (reduced l	oasis) input-output valua	tion				
such that (certification) $\underbrace{s^{\mathcal{N}}(t;\mu)}_{"truth" finite element output} \in \underbrace{[s_{\mathcal{N}}(t;\mu) - \Delta_{\mathcal{N}}^{s}(t;\mu), s_{\mathcal{N}}(t;\mu) + \Delta_{\mathcal{N}}^{s}(t;\mu)]}_{reduced basis"error bar"}$		$\mu \rightarrow \underbrace{\mathfrak{s}_{N}(t;\mu)}_{\text{reduced basis output}} \rightarrow \underbrace{\Delta_{N}^{s}(t;\mu)}_{\text{reduced basis error bound}}$							
$\underbrace{s^{\mathscr{N}}(t;\mu)}_{\text{``truth'' finite element output}} \in \underbrace{[s_{\mathcal{N}}(t;\mu) - \Delta_{\mathcal{N}}^{s}(t;\mu), s_{\mathcal{N}}(t;\mu) + \Delta_{\mathcal{N}}^{s}(t;\mu)]}_{\text{reduced basis``error bar''}}$		such that (c	ertification)						
		"truth	$\underbrace{s^{\mathscr{N}}(t;\mu)}_{\textit{finite element output}} \in$	$[s_N(t;\mu) - \Delta_N^s(t;\mu), s_N(t;\mu)]$ reduced basis"error	$(t;\mu)+\Delta_N^s(t;\mu)$ or bar")]			

Outline		Method	ology C		bMIT softw	are package	Illustrative worked examples	References	Methodology details
	~			_		_			

Heat Conduction: Problem Formulation

Steady Heat Conduction

Unsteady Heat Conduction

 $\begin{aligned} \text{Given } \mu \in \mathscr{D} \subset \mathbb{R}^{P}, \text{ we evaluate} \\ s_{o}(\mu) = \int_{B_{oL}} u_{o}(\mu) \\ \text{where } u_{o}(\mu) \text{ satisfies} \\ \left\{ \begin{array}{c} -\frac{\partial}{\partial x_{oj}} \left(\kappa_{oij} \frac{\partial u_{o}}{\partial x_{oj}}\right) = f_{o} & \text{in } \Omega_{o}(\mu) \\ +\text{BCs} & \text{on } \partial \Omega_{o}(\mu) \end{array} \right. \\ \end{aligned} \\ \end{aligned} \\ \end{aligned} \\ \end{aligned} \\ \begin{aligned} \text{Given } \mu \in \mathscr{D} \subset \mathbb{R}^{P}, \text{ we evaluate} \\ s_{o}(\mu) = \int_{0}^{t_{f}} \left(h(t) \int_{B_{L}} u_{o}(t;\mu)\right) dt \\ \text{where } u_{o}(t;\mu) \text{ satisfies for } t \in [0,t_{f}] \\ \left\{ \begin{array}{c} \frac{\partial u_{o}}{\partial t} - \frac{\partial}{\partial x_{oj}} \left(\kappa_{oij} \frac{\partial u_{o}}{\partial x_{oj}}\right) = g(t)f_{o} & \text{in } \Omega_{o}(\mu) \\ u_{o}(t=0;\mu) = u^{0} & \text{in } \Omega_{o}(\mu) \\ +\text{BCs & on } \partial \Omega_{o}(\mu) \end{array} \right. \end{aligned}$

- The $\mu-{\rm dependent}$ problem has to be formulated on a $\mu-{\rm independent}$ reference domain Ω
- A domain decomposition of Ω_o(μ) and proper piecewise-affine mappings are automatically built by rbMIT[©]
- The problem is then reduced to a parametric PDE on reference domain: geometric variations are now captured by the coefficients of the equation

★週 ▶ ★ 注 ▶ ★ 注 ▶ →

Outline	Methodology ○○●○○	rbMIT software pac	ckage I	llustrative worked examples	References	Methodology details		
Heat (Heat Conduction: Finite Element Discretization							
FE dis	cretization (Ste	eady case)	Semi-di	screte FE discretizati	on (Unsteady	r case)		
Given $\mu\in\mathscr{D}\subset\mathbb{R}^{P}$, we evaluate			Given $\mu\in\mathscr{D}\subset\mathbb{R}^{P}$, we evaluate					
<i>s</i> √($(\mu) = \{\mathbf{L}^{\mathscr{N}}(\mu)\}$	$^{\mathcal{T}}\{\mathbf{u}^{\mathscr{N}}(\mu)\}$		$s^{\mathscr{N}}(\mu) = \int_0^{t_f} \left(h(t) \{ \mathbf{I} \} \right)$	$\mathbf{L}^{\mathcal{N}}\}^{T}\{\mathbf{u}^{\mathcal{N}}(t;$	μ)}) dt		
where	$\{\mathbf{u}^{\mathscr{N}}\} \in \mathbb{R}^{\mathscr{N}}$ s	atisfies	where	$\mathbf{u}^{\mathscr{N}}(t;\mu) \in \mathbb{R}^{\mathscr{N}}$ satisf	fies for $t \in (0, $, <i>t</i> _f]		
[K ^N	$(\mu)]\{\mathbf{u}^{\mathscr{N}}(\mu)\}=$	$= \{\mathbf{F}^{\mathscr{N}}(\mu)\}$	$[\mathbf{M}^{\mathscr{N}}(\mu)]$ with $\mathbf{u}^{\mathscr{V}}$)]{ $\dot{\mathbf{u}}^{\mathscr{N}}(t;\mu)$ }+[$\mathbf{K}^{\mathscr{N}}(t=0;\mu)$ = $\mathbf{u}_{0}^{\mathscr{N}}$	$(\mu)]\{\mathbf{u}^{\mathscr{N}}(t;\mu)\}$	$ \mathbf{F}^{\mathcal{N}} = g(t) \{\mathbf{F}^{\mathcal{N}}\}$		

- The dimension of the FE approximation \mathscr{N} is sufficiently large so that the FE output $s^{\mathscr{N}}(\mu)$ is indistinguishable from the exact output $s(\mu)$ at the accuracy level of interest
- The matrix $[\mathbf{K}^{\mathscr{N}}(\mu)]$ is "affine" in the parameter μ , by which we mean

$$[\mathbf{K}^{\mathscr{N}}(\mu)] = \sum_{q=1}^{Q} \Theta_{q}(\mu) [\mathbf{K}_{q}^{\mathscr{N}}]$$

where for q = 1, ..., Q, the $\Theta_q : \mathscr{D} \to \mathbb{R}$ are (typically very smooth) μ -dependent functions, and the $[\mathbf{K}_q^{\mathscr{N}}]$ are μ -independent matrices

• The affine-parameter decomposition is crucial to the computational performance of the Offline-Online procedure (but it may be relaxed)

Outline Methodology 00000	rbMIT software packa g	e Illustrative worked examples	References	Methodology details
Heat Conduction: F	Reduced Ba	sis Approximation		
RB formulation (Steady	case) RB fo	ormulation (Unsteady case)		
Given $\mu\in\mathscr{D}$, we evaluate	e Giver	$\mu \in \mathscr{D}$, we evaluate		
$s_N(\mu) = \{\mathbf{F}_N\}^T \{\mathbf{u}_N(\mu)\}$	u)}	$s_N(\mu) = \int_0^{t_f} \left(h(t) \{ \mathbf{L}_f \} \right)$	$\{\mathbf{u}_N(t;\mu)\}$) dt
where $\{\mathbf{u}_N(\mu)\}$ satisfies	when	$e \{\mathbf{u}_N(t;\mu)\}$ satisfies		
$[K_N(\mu)]\{u_N(\mu)\} = \{I$	$\sum_{i=1}^{J} \Phi_{i}$	$(\mu)[M_{jN}]\{\dot{u}_N(t;\mu)\}+\sum_{q=1}^{\infty}\Theta_q(t;\mu)$	$\mu)[\mathbf{K}_{qN}]\{\mathbf{u}_N(t$	$(;\mu)\}=g(t)\{\mathbf{F}_N\}$

• Snapshot FEM solutions with $\mu \in {\cal S}_{{\cal N}} = \{\mu^1, \ldots, \mu^N\}, 1 \leq {\cal N} \leq {\cal N}_{\max}$ span a subspace

$$W_N^{\mathcal{N}} = \operatorname{span}\{u^{\mathcal{N}}(\mu^n), 1 \le n \le N\} = \operatorname{span}\{\zeta_n^{\mathcal{N}}, 1 \le n \le N\}$$

- $\bullet\,$ Reduced Basis formulaion is obtained by a Galerkin projection on $W_N^{\mathcal{N}}$
- $[\mathbf{Z}_N] \equiv [\mathbf{Z}_N^{\mathscr{N}}] = [\{\zeta_1^{\mathscr{N}}\}| \cdots |\{\zeta_N^{\mathscr{N}}\}]$ is the orthonormalized–snapshot $\mathscr{N} \times N$ matrix
- The following affine representations for stiffness and mass matrices is used:

$$\{\mathbf{L}_{N}\} = [\mathbf{Z}_{N}]^{T} \{\mathbf{L}^{\mathscr{N}}\}, \qquad \{\mathbf{F}_{N}\} = [\mathbf{Z}_{N}]^{T} \{\mathbf{F}^{\mathscr{N}}\}, \qquad [\mathbf{K}_{N}(\mu)] = [\mathbf{Z}_{N}]^{T} [\mathbf{K}^{\mathscr{N}}(\mu)] [\mathbf{Z}_{N}]$$
$$[\mathbf{K}_{qN}] = [\mathbf{Z}_{N}]^{T} [\mathbf{K}_{q}^{\mathscr{N}}] [\mathbf{Z}_{N}], 1 \le q \le Q, \qquad [\mathbf{M}_{jN}] = [\mathbf{Z}_{N}]^{T} [\mathbf{M}_{j}^{\mathscr{N}}] [\mathbf{Z}_{N}], 1 \le j \le J$$

Outline	Methodology ○○○○●	rbMIT software package	Illustrative worked examples	References	Methodology details
	and action		a than		

Heat Conduction: RB Error Estimation

A posteriori error estimator is a certificate of fidelity that rigorously bounds the error in the RB prediction relative to the highly accurate truth finite element solution

Steady case

$$|s^{\mathscr{N}}(\mu) - s_{\mathcal{N}}(\mu)| \leq \Delta^{s}_{\mathcal{N}}(\mu) = \varepsilon^{2}(\mu)/\alpha^{\mathscr{N}}_{\mathrm{LB}}(\mu)$$

• $\varepsilon^2(\mu) = \{\mathbf{R}^{\mathscr{N}}\}^T [\mathbf{Y}^{\mathscr{N}}]^{-1} \{\mathbf{R}^{\mathscr{N}}\}$ is the square of the dual norm of the residual vector

$$\{\mathbf{R}^{\mathscr{N}}\} = \{\mathbf{F}^{\mathscr{N}}\} - [\mathbf{K}^{\mathscr{N}}(\mu)][\mathbf{Z}_N]\{\mathbf{u}_N(\mu)\}$$

- $[\mathbf{Y}^{\mathscr{N}}] = [\mathbf{K}^{\mathscr{N}}(\overline{\mu})]$ for some $\overline{\mu} \in \mathscr{D}$
- $\alpha_{LB}^{\mathscr{N}}(\mu)$ is a lower bound for the discrete coercivity constant (SCM method)

Unsteady case

$$|s^{\mathscr{N}}(t,\mu)-s_{\mathcal{N}}(t,\mu)| \leq \Delta_{\mathcal{N}}^{s}(t,\mu) = \frac{\sigma_{0}}{\alpha_{\mathrm{LB}}^{\mathscr{N}}(\mu)} \left(\left(\int_{0}^{t_{f}} h^{2}(t) dt \right) \left(\int_{0}^{t_{f}} \varepsilon^{2}(t;\mu) dt \right) \right)^{1/2}$$

• $\sigma_0^2 = \{\mathbf{L}^{\mathscr{N}}\}^T [\mathbf{Y}^{\mathscr{N}}]^{-1} \{\mathbf{L}^{\mathscr{N}}\} = \text{square of the dual norm of the output vector } \mathbf{L}^{\mathscr{N}}$

•
$$\varepsilon^2(t;\mu) = {\{\mathbf{R}^{\mathscr{N}}\}^T [\mathbf{Y}^{\mathscr{N}}]^{-1} {\{\mathbf{R}^{\mathscr{N}}\}} =$$
square of the dual norm of the residual vecto

Outline	Methodology	rbMIT software package	Illustrative worked examples	References	Methodology details
The r	bMIT softwa	are package			

- $\bullet~{\rm The~rbMIT^{\odot}}$ software package implements in Matlab^{{\rm I\!R}} all general RB algorithms
- The user must describe the problem. The input can be separated into three parts:

The User Input

- geometry: Ω_o(μ) is defined by providing points coordinates, straight/curvy edges describing all regionsand regions Ω^k_o(μ)
- material properties: coefficients are provided for differential operator in each region $\Omega_o^k(\mu)$ and for boundary conditions.
- parameter control and settings: parameter domain \mathcal{D} , reference parameters and other RB information (e.g. N_{\max})

Outline	Methodology	rbMIT software package	Illustrative worked examples	References	Methodology details
The rt	MIT softwa	ire package			

- $\bullet~{\rm The~rbMIT^{\odot}}$ software package implements in Matlab^{{\rm I\!R}} all general RB algorithms
- The user must describe the problem. The input can be separated into three parts:

The User Input

- geometry: Ω_o(μ) is defined by providing points coordinates, straight/curvy edges describing all regionsand regions Ω^k_o(μ)
- material properties: coefficients are provided for differential operator in each region $\Omega_o^k(\mu)$ and for boundary conditions.
- parameter control and settings: parameter domain \mathscr{D} , reference parameters and other RB information (e.g. N_{\max})
- The rbMIT[©] Software architecture can be divided into three steps:
 - $\star\,$ the Problem Formulation Step ("Instructor/Lecturer" level)
 - \star the RB Offline Step ("Instructor" level)
 - * the RB Online Step ("Student" level)

Outline	Methodology	rbMIT software package	Illustrative worked examples	References	Methodology details
Problen	n Formulati	on. Offline and (Online Steps		

The Problem Formulation Step

- Domain Decomposition and geometric transformations are built: (coupled with material input properties) coefficients Θ_a(μ) are generated for each sub-domain
- A FE mesh is generated and discrete FE stiffness matrices and vectors are assembled for each sub-domain (and then combined) to form the μ-independent components

Outline	Methodology	rbMIT software package	Illustrative worked examples	References	Methodology details
Problen	n Formulatio	on Offline and	Online Steps		

The Problem Formulation Step

- Domain Decomposition and geometric transformations are built: (coupled with material input properties) coefficients $\Theta_{\alpha}(\mu)$ are generated for each sub-domain
- A FE mesh is generated and discrete FE stiffness matrices and vectors are assembled for each sub-domain (and then combined) to form the μ -independent components

The RB Offline Step

- RB parameter sample set $S_{N_{max}}$ and $[\mathbf{Z}_{N_{max}}]$ are obtained (greedy algorithm)
- $\{F_{N_{max}}\}$, $[K_{qN_{max}}]$ are saved into a "Online Database" to be used Online

Outline	Methodology	rbMIT software package	Illustrative worked examples	References	Methodology details
Probler	n Formulat	ion Offline and	Online Steps		

The Problem Formulation Step

- Domain Decomposition and geometric transformations are built: (coupled with material input properties) coefficients $\Theta_{\alpha}(\mu)$ are generated for each sub-domain
- A FE mesh is generated and discrete FE stiffness matrices and vectors are assembled for each sub-domain (and then combined) to form the μ-independent components

The RB Offline Step

- RB parameter sample set $S_{N_{max}}$ and $[Z_{N_{max}}]$ are obtained (greedy algorithm)
- $\{F_{N_{max}}\}$, $[K_{qN_{max}}]$ are saved into a "Online Database" to be used Online

The RB Online Step

- Given $\mu \in \mathcal{D}$, the RB Online Evaluator returns output prediction and error bound Online_RB (probname, μ , outputname, ...): $\mu \to s_N^{\mathcal{N}}(\mu), \Delta_N^s(\mu)$
- The RB Visualizer renders the relevant field variable and provides the error bound Vis_RB (probname, μ): $\mu \to \Omega$, $u_N^{\mathscr{N}}(x;\mu)$ for all x in $\Omega_0(\mu)$

Outline	Methodology	rbMIT software package	Illustrative worked examples	References	Methodology details
rbMIT	Users' Inte	erface			

Example of rbUfile for User Problem Formulation

```
% ----- rbMIT Software Copyright MIT 2006-09
% ----- DBP Huynh, NC Nguyen, AT Patera, G Rozza -----
probname = 'Tfin';
points = '[0,0; 1/2,0; 1/2,3/5; 3/20,3/5; 0,3/5; 3/20,3/5+mu2/2;
           3/20.3/5+mu2: 0.3/5+mu2: 0.3/5+mu2/21':
edge = [1,2;2,3;3,4;4,5;4,6;6,7;7,8;8,9;9,5;5,1];
geometry\{1\} = [1,2,3,4,10];
geometry\{2\} = [4,5,6,7,8,9];
qflaq = [1,1];
muref = [.1.4.1]:
mu min = [.01, 2, 1];
mu max = [0.5, 8, 10];
mu bar = [.1, 4, 1];
kappa{1} = '[mu3, 0, 0; 0, mu3, 0; 0, 0, 0]';
kappa{2} = [1, 0, 0; 0, 1, 0; 0, 0, 0];
dirichlet = '[1,0; 2,1; 4,0]';
nload = '[3,0,0,1; 5, mu1,0,0;6,mu1,0,0]';
outputname = 'basetemp';
oload='[1,2]';
```

イロト 不得下 不足下 不足下 一日

Outline	Methodology	rbMIT software package	Illustrative worked examples	References	Methodology details		
rbMIT	Users' Inte	rface					
E×	ample of rbU	file for User Probl	em Formulation				
	ht MIT 2006-0 Patera, G Roz	9 za					
		probname = 'Tf	in';				
		points = '[0,0 3/20	<pre>points = '[0,0; 1/2,0; 1/2,3/5; 3/20,3/5; 0,3/5; 3/20,3/5+mu2/2;</pre>				
٠	Geometry	edge = [1,2;2,3	edge = [1,2;2,3;3,4;4,5;4,6;6,7;7,8;8,9;9,5;5,1];				
	• Geometry	<pre>geometry{1} = [geometry{2} = [gflag = [1,1];</pre>	1,2,3,4,10]; 4,5,6,7,8,9];				
		<pre>muref = [.1,4, mu_min = [.01,2 mu_max = [0.5,8 mu_bar = [.1,4,</pre>	1]; ;,1]; ;,10]; 1];				
		kappa{1} = '[m kappa{2} = '[1	13, 0, 0; 0, mu3, 0; 0, , 0, 0; 0, 1, 0; 0, 0,	0, 0]'; 0]';			
		dirichlet = '[nload = '[1,0; 2,1; 4,0]'; 3,0,0,1; 5, mu1,0,0;6,m	u1,0,0]';			
		<pre>outputname = ' oload='[1,2]';</pre>	basetemp';		2		
			< <p>< ></p>	(日本)(日本)	SISSA		

Outline	Methodology 00000	rbMIT software package	Illustrative worked examples	References	Methodology details		
rbMIT	Users' Inter	face					
E×	ample of rbUf	ile for User Probl	em Formulation				
		ፄ r ፄ DBP	bMIT Software Copyrig Huynh, NC Nguyen, AT 1	ht MIT 2006-0 Patera, G Roz	9 za		
		probname = 'Tfi	in';				
		points = '[0,0; 3/20	1/2,0; 1/2,3/5; 3/20, ,3/5+mu2; 0,3/5+mu2; 0	3/5; 0,3/5; 3 ,3/5+mu2/2]';	/20,3/5+mu2/2;		
٠	Geometry	edge = [1,2;2,3;3,4;4,5;4,6;6,7;7,8;8,9;9,5;5,1];					
	Concery	<pre>geometry{1} = [geometry{2} = [gflag = [1,1];</pre>	1,2,3,4,10]; 4,5,6,7,8,9];				
۵	Parameters	<pre>muref = [.1,4, mu_min = [.01,2 mu_max = [0.5,8 mu_bar = [.1,4,</pre>	<pre>muref = [.1,4,1]; mu_min = [.01,2,1]; mu_max = [0.5,8,10]; mu_bar = [.1,4,1];</pre>				
		<pre>kappa{1} = '[mu kappa{2} = '[1,</pre>	13, 0, 0; 0, mu3, 0; 0, 0, 0; 0, 1, 0; 0, 0,	0, 0]'; 0]';			
		dirichlet = '[1 nload = '[3	,0; 2,1; 4,0]'; 3,0,0,1; 5, mu1,0,0;6,m	u1,0,0]';			
		<pre>outputname = '} oload='[1,2]';</pre>	pasetemp';		SISSA		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline	Methodology	rbMIT software package	Illustrative worked examples	References	Methodology details
rbMIT	Users' Inter	face			
E×	ample of rbUf	ile for User Probl	em Formulation		
		ፄ r ፄ DBP	bMIT Software Copyrig Huynh, NC Nguyen, AT	ht MIT 2006-0 Patera, G Roz	9 za
		probname = 'Tfi	.n';		
		<pre>points = '[0,0; 3/20</pre>	1/2,0; 1/2,3/5; 3/20, ,3/5+mu2; 0,3/5+mu2; 0	3/5; 0,3/5; 3 ,3/5+mu2/2]';	/20,3/5+mu2/2;
٠	 Geometry 	<pre>edge = [1,2;2,3 geometry{1} = [geometry{2} = [1]</pre>	;3,4;4,5;4,6;6,7;7,8;8 1,2,3,4,10]; 4,5,6,7,8,9];	,9;9,5;5,1];	
٠	Parameters	<pre>muref = [.1,4, mu_min = [.01,2 mu_max = [0.5,8 mu_bar = [.1,4,</pre>	1]; ,1]; ,10]; 1];		
٠	PDE/BCs	<pre>kappa{1} = '[mu kappa{2} = '[1,</pre>	3, 0, 0; 0, mu3, 0; 0, 0, 0; 0, 1, 0; 0, 0,	0, 0]'; 0]';	
		dirichlet = '[1 nload = '[3	,0; 2,1; 4,0]'; ,0,0,1; 5, mu1,0,0;6,m	u1,0,0]';	
		<pre>outputname = 'b oload='[1,2]';</pre>	pasetemp';		
			< □ >	 ▲ (□) > < < < < > > 	`SISSA´ ◆ 王 ◆ ミ ◆ € ◆

Outline Methodol	ogy rb	MIT software package	Illustrative worked examples	References	000000 OCC	
rbMIT Users'	Interfac	e				
Example of	frbUfile	e for User Problen	n Formulation			
		% rbM % DBP H	IT Software Copyrigh uynh, NC Nguyen, AT P	t MIT 2006-09 atera, G Rozza	 4	
		probname = 'Tfin'	;			
		points = '[0,0; 1 3/20,3	/2,0; 1/2,3/5; 3/20,3 /5+mu2; 0,3/5+mu2; 0,	/5; 0,3/5; 3/ 3/5+mu2/2]';	20,3/5+mu2/2;	
Geomet	ry	edge = [1,2;2,3;3,4;4,5;4,6;6,7;7,8;8,9;9,5;5,1];				
		<pre>geometry{1} = [1, geometry{2} = [4, gflag = [1,1];</pre>	2,3,4,10]; 5,6,7,8,9];			
• Paramet	ters	<pre>muref = [.1,4,1] mu_min = [.01,2,1 mu_max = [0.5,8,1 mu_bar = [.1,4,1]</pre>	;]; 0]; ;			
	C s	<pre>kappa{1} = '[mu3, kappa{2} = '[1, 0]</pre>	0, 0; 0, mu3, 0; 0,), 0; 0, 1, 0; 0, 0, 0	0, 01'; 1';		
		<pre>dirichlet = '[1,0; 2,1; 4,0]'; nload = '[3,0,0,1; 5, mu1,0,0;6,mu1,0,0]';</pre>				
 Output 		<pre>outputname = 'bas oload='[1,2]';</pre>	setemp';		<i>h</i>	
			• • •	(日)、<(日)、(日)、	EN E OQC	

• Example of geometry and field variable visualizations provided by rbMIT package

Figure: Initial geometry, domain decompostion, FE mesh and RB solution visualization for a thermal fin problem

-

Outline	Methodology	rbMIT software package	Illustrative worked examples ●○○○○○	References	Methodology details
The T	hermal Fin	problem			

Engineeristic aspects

- Heat sink designed for thermal management of high-density electronic components
- Shaded domain due to assumed periodicity and symmetry (multi-fin sink)
- Flowing air is modelled though a simple convection HT coefficient: to compute temperature at the base of the spreader

Physical and geometrical parametrization

$\mu_1 = \mathrm{Bi} = \tilde{h}_c \tilde{d}_{\mathrm{per}} / \tilde{\kappa}_{\mathrm{fin}}$	Biot number	$\mu_1 \in [0.01, 0.5]$
$\mu_2 = L = \tilde{L}/\tilde{d}_{\rm per}$	nondimensional fin height	$\mu_2 \in \llbracket 2,8 brace$
$\mu_3 = \kappa = \tilde{\kappa}_{\rm sp}/\tilde{\kappa}_{\rm fin}$	spreader-to-fin conductivity ratio	$\mu_3 \in \llbracket 1, 10 brace$

Outline	Methodology	rbMIT software package	Illustrative worked examples	References	Methodology details
Tho T	hormal Fin	problem			

- The Thermal Fin problem
 - Modeling: temperature $u_o(\mu)$ over $\Omega_o(\mu)$ satisfies a steady conduction equation
 - Output: average temperature over the base of the spreader (component to be cooled, being the hottest location in the system)

$$-\frac{\partial}{\partial x_{oi}}\left(\left[\begin{array}{c}\mu_{3} & 0\\ 0 & \mu_{3}\end{array}\right] \frac{\partial}{\partial x_{oj}}u_{o}(\mu)\right) = 0 \quad \text{in } \Omega_{o}^{1}$$

$$-\frac{\partial}{\partial x_{oi}}\left(\left[\begin{array}{c}1 & 0\\ 0 & 1\end{array}\right] \frac{\partial}{\partial x_{oj}}u_{o}(\mu)\right) = 0 \quad \text{in } \Omega_{o}^{2}(\mu_{2})$$

$$n_{oi}\kappa_{oij}^{2}\frac{\partial}{\partial x_{oj}}(\mu) + (\mu_{1})u_{o} = 0 \quad \text{on } \Gamma_{o1}$$

$$n_{oi}\kappa_{oij}\frac{\partial}{\partial x_{oj}}(\mu) + (\mu_{1})u_{o} = 0 \quad \text{on } \Gamma_{R} = \Gamma_{o5} \cup \Gamma_{06}$$

$$\left(0, \frac{3}{5} + \frac{\mu_{2}}{2}\right) + \left(\frac{3}{20}, \frac{3}{5} + \frac{\mu_{2}}{2}\right)$$

$$\left(0, \frac{3}{5}, \frac{3}{5}, \frac{\mu_{2}}{2}\right) + \left(\frac{3}{20}, \frac{3}{5}, \frac{3}{5}, \frac{\mu_{2}}{2}\right)$$

$$\left(0, \frac{3}{5}, \frac{3}{5}, \frac{1}{5}, \frac{1}{$$

Outline	Methodology	rbMIT software package	Illustrative w ○○●○○○	orked examples	References	Methodology o	letails
The T	hermal Fin	problem					
	Approxii	nation property		Poduction of	f 400.1 in lin	oor cyctom	

Figure: RB output and RB error bars — defined as the interval $[s_N(\mu) - \Delta_N^S(\mu), s_N(\mu) + \Delta_N^S(\mu)]$ — as a function of μ_1 for $\mu_2 = 2, \ \mu_3 = 1$ and N = 6.

- ★ Reduction of 400:1 in linear system dimension
- ★ Online evaluation requires only 5-6% of the FEM cpu cost

Outline	Methodology	rbMIT software package	Illustrative worked examples	References	Methodology details
The De	lamination	Crack problem			

Engineeristic aspects

- Analysis of the transient evolution of the temperature field near the surface of a Fiber-Reinforced-Polymer (FRP) Concrete (C) slab
- Application of transient conduction to real-time non-destructive crack detection
- Dependence of temperature field evolution on material/geometric inhomogeneities

Physical and geometrical parametrizatior

$\mu_1 = ilde{w}_{ m del}/ ilde{d}_{ m FRP}^{ m max}$	nondim. delamination crack width	$\mu_1 \in [0.01,1]$	
$\mu_2 = ilde{d}_{ ext{FRP}}/ ilde{d}_{ ext{FRP}}^{ ext{max}}$	nondim. crack location (FRP layer thickness)	$\mu_2 \in [0.1,1]$	
$\mu_3 = \kappa = \tilde{\kappa}_{\mathrm{FRP}}/\tilde{\kappa}_{\mathrm{C}}$	ratio of FRP/Concrete thermal conductivities	$\mu_3 \in [0.4,1.8]$	
	 < □ > < 同 > 		- SISSA

Outline		Methodology			IT softwar	e package	Illustrative worked examples	References	Methodology details	
	_				~					

The Delamination Crack problem

- Modeling: unsteady heat equation for temperature $u_o(\mu)$ over $\Omega_o(\mu) \times [0, t_f]$
- Output: integral of average temperature of the FRP layer over time interval $[0, t_f]$

$$\frac{\partial u_{o}(\mu)}{\partial t} - \frac{\partial}{\partial x_{oi}} \left(\left[\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right] \frac{\partial}{\partial x_{oj}} u_{o}(\mu) \right) = 0 \quad \text{in } \Omega_{o}^{1}(\mu),$$

$$\frac{\partial u_{o}(\mu)}{\partial t} - \frac{\partial}{\partial x_{oi}} \left(\left[\begin{array}{c} \mu_{3} & 0 \\ 0 & \mu_{3} \end{array} \right] \frac{\partial}{\partial x_{oj}} u_{o}(\mu) \right) = 0 \quad \text{in } \Omega_{o}^{2}(\mu),$$

$$u_{o}(t = 0) = 0 \quad \text{in } \Omega_{o}(\mu),$$

$$u_{o}(\mu) = 0 \quad \text{on } \Gamma_{o1},$$

$$n_{oi} \kappa_{oij} \frac{\partial u_{o}(\mu)}{\partial x_{oj}} u_{o}(\mu) = 0 \quad \text{on } \Gamma_{o1},$$

$$n_{oi} \kappa_{oij} \frac{\partial u_{o}(\mu)}{\partial x_{oj}} u_{o}(\mu) = 0 \quad \text{on } \Gamma \setminus (\Gamma_{o1} \cup \Gamma_{o10}),$$
output:
$$s(\mu) = \frac{1}{3\mu_{2}} \int_{0}^{t_{f}} \left(h(t) \int_{\Omega_{o}^{2}} u_{o}(t;\mu) \right) dt$$

$$(0,1) + \mu_{2} \left(\frac{(0,1+\mu_{2})}{(0,1)} \frac{(0,1+\mu_{2})}{(0,2,\frac{2\pi}{300})} \frac{(0,1+\mu_{2})}{(0,1)} \frac{(0,1+\mu_{2})}{(0,1)} \left(\frac{(0,1+\mu_{2})}{(0,2,\frac{2\pi}{300})} \frac{(0,1+\mu_{2})}{(0,1)} \frac{(0,1+\mu_{2})}{(0,2,\frac{2\pi}{300})} \frac{(0,1+\mu_{2})}{(0,1)} \frac{(0,1+\mu_{2})}{(0,1+\mu_{2})} \frac{(0,1+\mu_{2})}{(0,1+\mu_{2})} \frac{(0,1+\mu_{2})}{(0,1)} \frac{(0,1+\mu_{2})}{(0,1)} \frac{(0,1+\mu_{2})}{(0,1)} \frac{(0,1+\mu_{2})}{(0,1)} \frac{(0,1+\mu_{2})}{(0,1+\mu_{2})} \frac{(0,1+\mu_{2})}{(0,1+\mu_{2})} \frac{(0,1+\mu_{2})}{(0,1+\mu_{2})} \frac{(0,1+\mu_{2})}{(0,1+\mu_{2})} \frac{(0,1+\mu_{2})}{(0,1+\mu_{2})} \frac{(0,1+\mu_{2})}{(0,1+\mu_{2})} \frac{(0,1+\mu_{2})}{(0,1+\mu_{2})} \frac{(0,1+\mu_{$$

Outline	Methodology	rbMIT software package	Illustrative worked examples	References	Methodology details
			00000		

The Delamination Crack problem

Approximation property

$\#$ of mesh nodes ${\mathscr N}$	1912
$\#$ of time steps ${\mathscr K}$	50
# of RB functions N	25

 Reduction of 80:1 in linear system dimension (at each time step)

Figure: RB output and RB error bars — defined as the interval $[s_N(\mu) - \Delta_N^s(\mu), s_N(\mu) + \Delta_N^s(\mu)]$ — as a function of μ_1 for $\mu_2 = 0.2$, $\mu_3 = 1$ and N = 25.

Figure: RB temperature field for different choices of parameters: $\mu = (0.5, 0.5, 0.4), \mu = (0.5, 0.5, 1.8), \mu = (1, 0.5, 1.8).$

Outline	Methodology	rbMIT software package	Illustrative worked examples	References	Methodology details
Referer	ices				

- A. Quarteroni, G. R. and A. M., 2011. Certified Reduced Basis Approximation for Parametrized PDEs and Applications. J. Math. Industry, 1:3.
- G. R., D. B. P. Huynh and A. T. Patera, 2008. "Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive PDEs: Application to transport and continuum mechanics", Arch. Comput. Methods Engrg., 15 (3), pp. 229–275.
- A.T. Patera and G. Rozza. Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized PDEs. to appear in MIT Pappalardo Graduate Monographs in Mechanical Engineering, 2009.
 ©Massachusetts Institute of Technology, Version 1.0.
- A. M., A. Quarteroni and G. R., 2012. Computational reduction for parametrized PDEs: strategies and applications. Milan J. Math. 80, pp. 283–309.
- G. R., C. N. Nguyen, D. B. P. Huynh, and A. T. Patera, 2009. Real-time reliable simulation of heat transfer phenomena, *Proceedings of HT2009, 2009 ASME Summer Heat Transfer Conference*, S. Francisco, USA, paper HT 2009–88212.
- M. Grepl, A.T. Patera, 2005. A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: Math. Model. Numer. Anal., 39(1):157–181.
- M. Grepl, Y. Maday, N.C. Nguyen, and A.T. Patera, 2007. Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: Math. Model. Numer. Anal., 41(3):575–605.
- B. Haasdonk and M. Ohlberger, 2008. Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM: Math. Model. Numer. Anal., 42:277–302.
- D. B. P. Huynh, C. N. Nguyen, G. R. and A. T. Patera, 2007-09. Documentation for rbMIT Software. http://augustine.mit.edu/methodology/ ©MIT, Tech. Lic. Office 12600, Cambridge, MA, US.

Outline	Metho	dology ⊙		oftware pac	kage	III. O	ustrative worked	examples	R	eferences	Methodology d ●○○○○○	etails
~		~		_			(

Steady Heat Conduction: Formulation (1/2)

Scalar problem formulation

Given $\mu \in \mathscr{D} \subset \mathbb{R}^P$, we evaluate the output

$$s_o(\mu) = \int_{B_{oL}} u_o(\mu)$$

where the temperature field $u_o(\mu)$ satisfies

$$\begin{pmatrix} -\frac{\partial}{\partial x_{oi}} \left(\kappa_{oij}^{k} \frac{\partial u_{o}(\mu)}{\partial x_{oj}} \right) + r_{o}^{k} u = f_{o}^{k} & \text{in } \Omega_{o}(\mu) \\ u_{o} = u_{oD} & \text{on } \Gamma_{oD} \\ n_{oi} \kappa_{oij}^{k} \frac{\partial u_{o}(\mu)}{\partial x_{oj}} + g_{o1}(u_{o}(\mu) - g_{o2}) = g_{o3} & \text{on } \Gamma_{oN} \end{pmatrix}$$

Assumptions:

- κ^k_{oij} is a 2×2 SPD tensor conductivity
- * $r_o^k \ge 0$ (reaction) and f_o^k (field) are scalars
- * g_{o1} is the Robin coefficient, g_{o2} is the "sink" field value, and g_{o3} is the flux

We must formulate our μ -dependent problem on a μ -indep. reference domain Ω :

- A decomposition of the domain Ω_o(μ) in subdomains Ω^k_o(μ), 1 ≤ k ≤ K_{reg} is automatically built
- A piecewise-affine mapping which maps the μ -dependent $\bar{\Omega}_o(\mu) \equiv \bigcup_{k=1}^{K_{reg}} \bar{\Omega}_o^k(\mu)$ to a reference μ -independent $\bar{\Omega} \equiv \bar{\Omega}(\mu_{ref}) \equiv \bigcup_{k=1}^{K_{reg}} \bar{\Omega}^k$ is built
- The problem is reduced to a parametric PDE on reference domain: geometric variations are now captured by the coefficients of the equation

Outline	Methodology	rbMIT software package	Illustrative worked examples	References	Methodology details ○●○○○○
Steady	Heat Condu	ction: Formulat	ion (2/2)		

Finite Element discretization

Given $\mu \in \mathscr{D} \subset \mathbb{R}^{P}$, we evaluate

$$s^{\mathscr{N}}(\mu) = \{\mathsf{L}^{\mathscr{N}}(\mu)\}^{\mathsf{T}}\{\mathsf{u}^{\mathscr{N}}(\mu)\}$$

where the FE temperature solution $\{\mathbf{u}^{\mathscr{N}}\} \in \mathbb{R}^{\mathscr{N}}$ satisfies

 $[\mathbf{K}^{\mathscr{N}}(\boldsymbol{\mu})]\{\mathbf{u}^{\mathscr{N}}(\boldsymbol{\mu})\} = \{\mathbf{F}^{\mathscr{N}}(\boldsymbol{\mu})\}$

Finite Element Assumptions:

- ★ [**K**^𝒩(μ)] ∈ ℝ^𝑋×𝑋: FE stiffness matrix {**F**^𝑋(μ)} ∈ ℝ^𝑋: force vector {**L**^𝑋(μ)} ∈ ℝ^𝑋: output vector
- $\label{eq:keylinear} \begin{array}{l} \star \ [\mathbf{K}^{\mathscr{N}}(\mu)] \text{ is SPD and} \\ \{\mathbf{L}^{\mathscr{N}}(\mu)\} = \{\mathbf{F}^{\mathscr{N}}(\mu)\} \ (\text{``compliant''} \\ \text{problem}) \end{array}$
- The dimension of the FE approximation \mathscr{N} is sufficiently large so that the FE output $s^{\mathscr{N}}(\mu)$ is indistinguishable from the exact output $s(\mu)$ at the accuracy level of interest
- The matrix $[\mathbf{K}^{\mathscr{N}}(\mu)]$ is "affine" in the parameter μ , by which we mean

$$[\mathbf{K}^{\mathscr{N}}(\mu)] = \sum_{q=1}^{Q} \Theta_{q}(\mu) [\mathbf{K}^{\mathscr{N}}_{q}]$$

where for $q = 1, \ldots, Q$, the $\Theta_q : \mathscr{D} \to \mathbb{R}$ are (typically very smooth) μ -dependent functions, and the $[\mathbf{K}_q^{\mathscr{N}}]$ are μ -independent matrices

• The affine-parameter decomposition is crucial to the computational performance of the Offline-Online procedure (but it may be relaxed)

Steady Heat Conduction: Reduced Basis Approximation

• Snapshot FEM solutions with $\mu \in S_N = \{\mu^1, \dots, \mu^N\}, 1 \leq N \leq N_{\mathsf{max}}$ give

$$W_N^{\mathcal{N}} = \operatorname{span}\{u^{\mathcal{N}}(\mu^n), 1 \le n \le N\} = \operatorname{span}\{\zeta_n^{\mathcal{N}}, 1 \le n \le N\}$$

RB formulation (Galerkin projection)

Given $\mu \in \mathscr{D}$, we evaluate the RB output as

$$s_N(\mu) = \{\mathbf{F}_N\}^T \{\mathbf{u}_N(\mu)\}$$

where the RB coefficient N-vector $\{\mathbf{u}_N(\mu)\}$ satisfies

 $[\mathbf{K}_N(\mu)]\{\mathbf{u}_N(\mu)\} = \{\mathbf{F}_N\}.$

* $[\mathbf{Z}_N] \equiv [\mathbf{Z}_N^{\mathcal{N}}] = [\{\zeta_1^{\mathcal{N}}\}|\cdots|\{\zeta_N^{\mathcal{N}}\}]$ is the orthonormalized–snapshot $\mathcal{N} \times N$ matrix

*
$$[\mathbf{K}_{N}(\mu)] =$$

 $[\mathbf{Z}_{N}]^{T}[\mathbf{K}^{\mathscr{N}}(\mu)][\mathbf{Z}_{N}]$
* $\{\mathbf{F}_{N}\} = [\mathbf{Z}_{N}]^{T}\{\mathbf{F}^{\mathscr{N}}\}$

• With affine form of $[\mathbf{K}_N(\mu)]$ the RB problem becomes $\sum_{q=1}^{Q} \Theta_q(\mu) [\mathbf{K}_{qN}] \{ \mathbf{u}_N(\mu) \} = \{ \mathbf{F}_N \} \text{ where the } [\mathbf{K}_{qN}] = [\mathbf{Z}_N]^T [\mathbf{K}_q^{\mathscr{N}}] [\mathbf{Z}_N] \text{ are parameter-independent } N \times N \text{ matrices}$

Offline stage: compute the { $\mathbf{u}^{\mathscr{N}}(\mu^n)$ }, $1 \le n \le N_{\text{max}}$, form the matrix [$\mathbf{Z}_{N_{\text{max}}}$] and then form and store { $\mathbf{F}_{N_{\text{max}}}$ } and [$\mathbf{K}_{qN_{\text{max}}}$]

Online stage: for a given μ and N retrieve the pre-computed $[\mathbf{K}_{qN}]$ and $\{\mathbf{F}_N\}$, form $[\mathbf{K}_N(\mu)]$, solve the $N \times N$ system to obtain $\{\mathbf{u}_N(\mu)\}$, and evaluate s_N

Outline	Methodology	rbMIT software package	Illustrative worked examples	References	Methodology details

Unsteady Heat Conduction: Formulation

Problem formulation

Given $\mu \in \mathscr{D} \subset \mathbb{R}^{P}$, we evaluate the output $s(\mu) = \int_{0}^{t_{f}} \left(h(t) \int_{\mathbb{R}} u(t;\mu) \right) dt$

where the temperature field $u(t; \mu)$ solves

 $\begin{cases} \frac{\partial u}{\partial t} - \frac{\partial}{\partial x_i} \left(\kappa_{ij}^k \frac{\partial u}{\partial x_j} \right) + r^k u = g(t) f^k & \text{in } \Omega(\mu) \\ u(t=0;\mu) = u_0 & \text{in } \Omega(\mu) \\ + \text{boundary conditions} & \text{on } \partial \Omega(\mu) \end{cases}$

Assumptions:

- \star Same as before on κ^k_{ij} , r^k , f^k
- * $h(t), g(t) \in L^2((0, t_f])$ are the output and input (control) functions of t
- * g_1 , g_2 , and g_3 may depend on t as well

Semi-discrete Finite Element approximation

FE Assumptions:

- * $[\mathbf{M}^{\mathscr{N}}(\mu)]$ FE mass matrix, SPD and affine in the parameter: $[\mathbf{M}^{\mathscr{N}}(\mu)] = \sum_{j=1}^{J} \Phi_j(\mu) [\mathbf{M}_j^{\mathscr{N}}]$
- \star Trapezoidal rule for $s^{\mathscr{N}}(\mu)$

Given $\mu \in \mathscr{D} \subset \mathbb{R}^{P}$, we evaluate $s^{\mathscr{N}}(\mu) = \int_{0}^{t_{f}} \left(h(t) \{ \mathbf{L}^{\mathscr{N}} \}^{T} \{ \mathbf{u}^{\mathscr{N}}(t; \mu) \} \right) dt$

where the FE temperature vector $\mathbf{u}^{\mathscr{N}}(t;\mu) \in \mathbb{R}^{\mathscr{N}}$ satisfies for $t \in (0, t_f]$ $[\mathbf{M}^{\mathscr{N}}(\mu)]\{\dot{\mathbf{u}}^{\mathscr{N}}(t;\mu)\} + [\mathbf{K}^{\mathscr{N}}(\mu)]\{\mathbf{u}^{\mathscr{N}}(t;\mu)\} = g(t)\{\mathbf{F}^{\mathscr{N}}\}$ with initial condition $\mathbf{u}^{\mathscr{N}}(t=0;\mu) = \mathbf{u}_0^{\mathscr{N}}$

Outline	Methodology	rbMIT software package	Illustrative worked examples	References	Methodology details ○○○○●○
Unctoo	dy Hoat C	anduction: Rodu	od Racis Approvim	ation	

- For generation of RB spaces $W_N^{\mathcal{N}} = \operatorname{span}\{\zeta_n^{\mathcal{N}}, 1 \le n \le N\}, \ 1 \le N \le N_{\max}$, a **POD-Greedy sampling procedure** combines spatial snapshots in time and μ
 - \star POD in t captures the causality associated with the evolution equation
 - $\star\,$ Greedy in μ treats efficiently more extensive ranges of parameter variation

Reduced Basis formulation (Galerkin projection)

Given $\mu\in \mathscr{D},$ we evaluate the RB output as

$$s_N(\mu) = \int_0^{t_f} \left(h(t) \{ \mathbf{L}_N \}^T \{ \mathbf{u}_N(t; \mu) \} \right) dt$$

where $\{\mathbf{u}_N(t;\mu)\}$ satisfies the evolution equation

$$\sum_{j=1}^{J} \Phi_j(\mu) [\mathsf{M}_{jN}] \{ \dot{\mathsf{u}}_N(t;\mu) \} + \sum_{q=1}^{Q} \Theta_q(\mu) [\mathsf{K}_{qN}] \{ \mathsf{u}_N(t;\mu) \} = g(t) \{ \mathsf{F}_N \}$$

• The following affine representations for stiffness/mass matrices is used:

$$\{\mathbf{L}_{N}\} = [\mathbf{Z}_{N}]^{T} \{\mathbf{L}^{\mathscr{N}}\}, \qquad \{\mathbf{F}_{N}\} = [\mathbf{Z}_{N}]^{T} \{\mathbf{F}^{\mathscr{N}}\}$$

$$[\mathbf{K}_{qN}] = [\mathbf{Z}_N]^T [\mathbf{K}_q^{\mathscr{N}}] [\mathbf{Z}_N], 1 \le q \le Q, \qquad [\mathbf{M}_{jN}] = [\mathbf{Z}_N]^T [\mathbf{M}_j^{\mathscr{N}}] [\mathbf{Z}_N], 1 \le j \le J$$

• Offline-Online procedure is straightforward and very similar to the steady case

A B A A B A

Methodology rbMIT software package Outline Illustrative worked examples References Methodology details 000000

Steady/Unsteady Heat Conduction: RB Error Estimation

A posteriori error estimator is a certificate of fidelity that rigorously bounds the error in the RB prediction relative to the highly accurate truth finite element solution

Steady case

$$|s^{\mathscr{N}}(\mu) - s_{N}(\mu)| \leq \Delta_{N}^{s}(\mu) = \varepsilon^{2}(\mu)/\alpha_{\mathrm{LB}}^{\mathscr{N}}(\mu)$$

- $\varepsilon^2(\mu) = {\mathbf{R}^{\mathscr{N}}}^T {\mathbf{Y}^{\mathscr{N}}}^{-1} {\mathbf{R}^{\mathscr{N}}} =$ square of the dual norm of the residual vector $\{\mathbf{R}^{\mathcal{N}}\} = \{\mathbf{F}^{\mathcal{N}}\} - [\mathbf{K}^{\mathcal{N}}(\mu)][\mathbf{Z}_{N}]\{\mathbf{u}_{N}(\mu)\}$
- $\alpha_{\rm TR}^{\mathcal{N}}(\mu)$ is a lower bound for the discrete coercivity constant (SCM method)

Unsteady case

$$|s^{\mathscr{N}}(t,\mu)-s_{\mathcal{N}}(t,\mu)| \leq \Delta_{\mathcal{N}}^{s}(t,\mu) = \frac{\sigma_{0}}{\alpha_{\mathrm{LB}}^{\mathscr{N}}(\mu)} \left(\left(\int_{0}^{t_{f}} h^{2}(t) dt \right) \left(\int_{0}^{t_{f}} \varepsilon^{2}(t;\mu) dt \right) \right)^{1/2}$$

• $\sigma_0^2 = \{\mathbf{L}^{\mathcal{N}}\}^T [\mathbf{Y}^{\mathcal{N}}]^{-1} \{\mathbf{L}^{\mathcal{N}}\} =$ square of the dual norm of the output vector $\mathbf{L}^{\mathcal{N}}$ • $\varepsilon^2(t;\mu) = \{\mathbf{R}^{\mathscr{N}}\}^T [\mathbf{Y}^{\mathscr{N}}]^{-1} \{\mathbf{R}^{\mathscr{N}}\} = \text{square of the dual norm of the residual vector}$

The computation of $\varepsilon^2(\mu)$ readily admits an Offline-Online strategy: all the underbraced matrix-matrix or matrix-vector products can be pre-computed Offline

