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Linear constant coefficient ODEs

We begin by looking at the autonomous linear first-order system

ẋ(t) = Ax(t), x(0) = x0,

where A is a given n by n matrix.
Then a straightforward calculation shows that the solution is given by

x(t) = exp(tA)x0,

where the exponential function is defined by the usual power series

exp(tA) =
∞∑
j=0

t j

j!
Aj ,

which converges by comparison with the real-valued exponential function
since

‖
∞∑
j=0

t j

j!
Aj‖ ≤

∞∑
j=0

|t|j

j!
‖A‖j = exp(|t|‖A‖).
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Linear constant coefficient ODEs

One of the basic questions concerning the solution is the long-time
behavior: Does the solutions remain bounded for all times (stability) or
does it even converge to zero (asymptotic stability)?
This question is usually answered by determining the spectrum (i.e. the
eigenvalues) of A:

Theorem

A linear constant coefficient ODE is asymptotically stable iff all
eigenvalues of A have negative real part. It is stable iff all eigenvalues have
non-positive real part and for those with real part zero the algebraic and
geometric multiplicities coincide.

This can easily been seen by resorting to the Jordan canonical form of A.
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Linear constant coefficient ODEs

Proof.

If U maps A to Jordan canonical form U−1AU = J1 ⊕ · · · ⊕ Jm, where
J = αI + N are the Jordan blocks, then

exp(tA) = U

exp(tJ1)
. . .

exp(tJm)

U−1,

with the exponential of one Jordan block given by

exp(tJ) = eαt



1 t t2

2! . . . tk−1

(k−1)!

1 t
. . .

...

1
. . . t2

2!
. . . t

1


.
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Linear constant coefficient ODEs

In particular, in the stable case one has

‖ exp(tA)‖ ≤ C , t ≥ 0,

and in the asymptotically stable case

‖ exp(tA)‖ ≤ Ce−αt , t ≥ 0,

for some C ≥ 1 and some α > 0. Hence one has a quite good qualitative
understanding of this case.
We remark that the first case is typical for physical systems which are e.g.
of Hamiltonian type. For such systems the conservation of energy implies
stability but clearly this is incompatible with asymptotic stability. If one
adds some friction to the system, one has energy dissipation and hence
gets asymptotic stability.
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Strongly continuous semigroups

Trying to apply these ideas to partial differential equations things get more
tricky. To understand this consider the heat equation which can formally
be written as

ẋ(t) = Ax(t), A = ∆,

where ∆ =
∑n

j=1 ∂
2
xj

is the usual Laplacian. Now the underlying space X
will be a suitable function space (e.g., some Lp(Rn)) and ∆ is considered
as a linear operator on this space. If A were a bounded operator on X we
could define exp(tA) as before by using power series. This gives a
continuous group of operators

t 7→ T (t) = exp(tA).

However, our operator is not bounded (this is already reflected by the fact
that we need to restrict its domain to functions which can be
differentiated at least twice in some suitable sense) and hence this simple
approach does not work here. Moreover, the fact that a Gaussian initial
condition concentrates and eventually becomes unbounded for negative
times, shows that we cannot expect T (t) to be defined for all t ∈ R.
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Strongly continuous semigroups

Nevertheless, there is a well-developed theory under what conditions on A
the abstract Cauchy problem

ẋ(t) = Ax(t), x(0) = x0,

in a Banach space X has a solution given by

x(t) = T (t)x0,

where T (t), t ≥ 0, forms a strongly continuous semigroup of (bounded)
operators.
A strongly continuous operator semigroup (also C0 semigoup) is a family
of bounded operators T (t) : X → X , t ≥ 0, such that

1 T (t)x ∈ C ([0,∞),X ) for every x ∈ X (strong continuity) and
2 T (0) = I, T (t + s) = T (t)T (s) for every t, s ≥ 0 (semigroup

property).

Note: Requiring uniform continuity instead of strong continuity is
equivalent to A being bounded.
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Strongly continuous semigroups

In this setting A is called the infinitesimal generator of T (t) and can be
recovered via

Ax = lim
t↓0

1

t
(T (t)x − x)

with domain precisely those x ∈ X for which the above limit exists.
We are interested in bounded semigroups satisfying ‖T (t)‖ ≤ 1 which are
known as semigroups of contraction.

Theorem (Hille–Yosida theorem)

A linear (possibly unbounded) operator A is the infinitesimal generator of
a contraction semigroup if and only if

1 A is densely defined, closed and

2 the resolvent set of A contains the positive half line and for every
λ > 0 we have

‖(A− λ)−1‖ ≤ 1

λ
.
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Strongly continuous semigroups

Another version which is often easier to check is

Theorem (Lumer–Phillips theorem)

Let X be a complex Hilbert space with scalar product 〈., .〉. A linear
(possibly unbounded) operator A is the infinitesimal generator of a
contraction semigroup if and only if

1 A is densely defined, closed and

2 the resolvent set of A contains the positive half line and A is
dissipative

Re〈x ,Ax〉 ≤ 0

for every x in the domain of A.

Note: The theorem also holds in Banach spaces if the scalar product is
replaced by a duality section.
Note: In the finite dimensional case dissipativity implies that all
eigenvalues have non-positive real part.
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Strongly continuous semigroups

In our case the underlying partial differential equation will be linear with
constant coefficients and just as in the ODE case we will be able to obtain
an explicit formula for T (t) and hence we will not further pursue these
ideas here.
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Nonlinear ODEs

So far we have only looked at linear equations while most more realistic
problems are nonlinear. However, in many situations nonlinear problems
can be considered as perturbations of linear problems via

ẋ(t) = Ax(t) + g(t, x(t)).

In such an situation we can use our knowledge about the linear problem
(g ≡ 0) to show that asymptotic stability persists for the perturbation
under suitable assumptions:
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Nonlinear ODEs

Theorem

Suppose A is asymptotically stable

‖ exp(tA)‖ ≤ Ce−αt , t ≥ 0,

for some constants C , α > 0. Suppose that

|g(t, x)| ≤ g0|x |, |x | ≤ δ, t ≥ 0,

for some constant 0 < δ ≤ ∞. Then, if g0C < α, the solution x(t)
starting at x(0) = x0 satisfies

‖x(t)‖ ≤ Ce−(α−g0C)t |x0|, |x0| ≤
δ

C
, t ≥ 0.
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Nonlinear ODEs

Proof.

Our point of departure is the following integral equation

x(t) = exp(tA)x0 +

∫ t

0
exp((t − s)A)g(s, x(s))ds.

which follows from Duhamel’s formula for the in homogenous problem and
is clearly equivalent to our original Cauchy problem. Inserting our
assumptions we obtain

|x(t)| ≤ Ce−αt |x0|+
∫ t

0
Ce−α(t−s)g0|x(s)|ds

for t ≥ 0 as long as |x(s)| ≤ δ for 0 ≤ s ≤ t.
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Nonlinear ODEs

Proof (Cont.).

Introducing y(t) = |x(t)|eαt we get

y(t) ≤ C |x0|+
∫ t

0
Cg0y(s)ds

and Gronwall’s inequality implies y(t) ≤ C |x0|eCg0t . This is the desired
estimate

|x(t)| ≤ C |x0|e−(α−Cg0)t , 0 ≤ t ≤ T ,

for solutions which satisfy |x(t)| ≤ δ for 0 ≤ t ≤ T . If we start with
|x0| ≤ δ/C we have |x(t)| ≤ δ for sufficiently small T (note C ≥ 1) by
continuity and the above estimate shows that this remains true for all
times.
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Discussion of the previous theorem

First of all note that in applications the linear part Ax will capture the
linear behavior of the right hand side at 0 and the remainder g(t, x) will
vanish faster than linear near 0. Hence in our assumption we will be able
to make g0 as small as we want at the expense of choosing δ small. In
particular, asymptotic stability persists under nonlinear perturbations.

Secondly, it is important to emphasize that the two main ingredients for
this proof were

Duhamel’s formula and

a good qualitative understanding of the linear part.

In particular, it generalizes to situations where a corresponding estimate
for the linear part is available (e.g. periodic equations).
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Generalizing the previous theorem

The generalization to strongly continuous semigroups is a bit more tricky.
First of all any solution of the inhomogenous abstract Cauchy problem

ẋ(t) = Ax(t) + g(t), x(0) = x0,

will still be given by Duhamel’s formula

x(t) = T (t)x0 +

∫ t

0
T (t − s)g(s)ds

provided g is integrable. However, the above formula might not be a
(classical) solution of the abstract Cauchy problem and one speaks of a
mild solution (it can be shown that one has uniqueness and hence there
will be no classical solution in such a situation).
So solutions of our integral equation in the nonlinear situation might not
be solutions of the original problem.
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Generalizing the previous theorem

Concerning (uniform) exponential stability of semigroups

‖T (t)‖ ≤ Ce−αt

for some C , α > 0 we mention:

Theorem (Gearhart–Prüss–Greiner)

Let X be a Hilbert space. Then a strongly continuous semigroup T (t) is
uniformly exponentially stable if and only if the resolvent set of the
generator A contains the half-plane {z ∈ C|Re(z) > 0} and satisfies

sup
Re(z)>0

‖(A− z)−1‖ <∞.

Note: Since the resolvent (A− z)−1 is analytic in z and ‖(A− z)−1‖ → ∞
as z approaches the spectrum, the condition implies that the spectrum
(which is closed) must be contained in {z ∈ C|Re(z) < 0}. Since for
bounded operators we have ‖(A− z)−1‖ ≤ (|z | − ‖A‖)−1 for |z | > ‖A‖
this condition reduces to our previous one for finite matrices.
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Nonlinear ODEs

Finally we want to look at the conservative case. Unfortunately this case is
much less stable under perturbations as the trivial example

ẋ = x2

show. In fact, the solution is given by

x(t) =
x0

1− x0t

which blows up at the finite positive time t = 1
x0

if x0 > 0.
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Nonlinear ODEs

Theorem

Suppose A is stable

‖ exp(tA)‖ ≤ C , t ≥ 0,

for some constant C ≥ 1. Suppose that

|g(t, x)| ≤ g0(t)|x |, |x | ≤ δ, t ≥ 0,

for some constant 0 < δ ≤ ∞ and some function g0(t) with
G0 =

∫∞
0 g0(t) <∞. Then the solution x(t) starting at x(0) = x0 satisfies

|x(t)| ≤ C exp(CG0)|x0|, |x0| ≤
δ

C exp(CG0)
, t ≥ 0.
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Nonlinear ODEs

Proof.

As in the previous proof we start with

x(t) = exp(tA)x0 +

∫ t

0
exp((t − s)A)g(s, x(s))ds

and using our estimates we obtain

|x(t)| ≤ C |x0|+
∫ t

0
Cg0(s)|x(s)|ds.

Hence an application of Gronwall’s inequality

|x(t)| ≤ C |x0| exp

(
C

∫ t

0
g0(s)ds

)
≤ C |x0| exp (CG0)

finishes the proof.
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Discussion of the previous theorem

Observe that in this case the linear evolution does not provide any decay
and hence we had to assume that our perturbation provides the necessary
decay. In finite dimension there is nothing much we can do. However, in
infinite dimensions there are different norms and while one might be
conserved, another one might decay!
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Discussion of the previous theorem

To understand this let as look again at the heat equation whose solution in
Rn is given by

u(t, x) =
1

(4πt)n/2

∫
Rn

e−
|x−y|2

4t g(y)dy .

For positive initial condition g a simple application of Fubini shows
‖u(t, .)‖1 = ‖g‖1 that the L1 norm is conserved. Physically this
corresponds to energy conservation. Moreover, Young’s inequality shows
‖u(t, .)‖p ≤ ‖g‖p for every 1 ≤ p ≤ ∞. However, if we use different
norms on both sides we get decay

‖u(t, .)‖∞ ≤
1

(4πt)n/2
‖g‖1.

Of course this decay is no longer exponential. In fact, we have equality for
the fundamental solution of the heat equation and hence the above
estimate is optimal.
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Conclusion

What you should have remembered so far:

Nonlinear equations can be treated as perturbations of linear
problems by virtue of Duhamel’s formula!

This requires a good qualitative understanding of the underlying
linear problem.

For dissipative systems we have exponential decay in time for the
underlying semigroup. For conservative systems we can still get
polynomial decay of the semigroup if we chose the right norms.
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The 1d discrete Schrödinger equation

To keep the technical problems at a minimum and to be able to focus on
some of the main ideas we will use the one-dimensional discrete
Schrödinger equation as our model:

iu̇(t) = H0u(t), t ∈ R,

where
(H0u)n = −un+1 + 2un − un−1, n ∈ Z.

We will investigate this operator and its associated group in the weighted
spaces `pσ = `pσ(Z), σ ∈ R, associated with the norm

‖u‖`pσ =

{(∑
n∈Z(1 + |n|)pσ|u(n)|p

)1/p
, p ∈ [1,∞),

supn∈Z(1 + |n|)σ|u(n)|, p =∞.

Of course, the case σ = 0 corresponds to the usual `p0 = `p spaces without
weight.
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Dispersion

Making the plane wave ansatz

un(t) = e−i(θn−ωt)

we obtain a solution if and only if the dispersion relation

ω = 2(cos(θ)− 1)

holds. Hence different plane waves travel at different speeds which is
known as dispersion. According to physical intuition the superposition of
different plane waves will lead to destructive interference and thus to
decay of wave packets.
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The kernel of the time evolution

Mathematically a wave packets is a (continuous superposition) of plane
waves given by

un(t) =

∫ π

−π
c(θ)e−i(θn−ω(θ)t)

where c(θ) is the amplitude of the plane wave with frequency θ.
Evaluating this formula at t = 0 shows that the initial condition

gn = un(0) =

∫ π

−π
c(θ)e−iθn

is given by 2π the Fourier coefficients of c(θ):

c(θ) =
∑
k∈Z

gk
2π

eiθk .
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The kernel of the time evolution

Putting all together we obtain

un(t) = (exp(−itH0)g)n =
∑
m∈Z

Kn,k(t)gk ,

where

Kn,k(t) =
1

2π

∫ π

−π
e−it(2−2 cos θ)e−iθ|n−k|dθ.

Note: The last integral is Bessel’s integral implying

Kn,k(t) = ei(−2t+π
2
|n−k|)J|n−k|(2t),

where Jν(z) denotes the Bessel function of order ν. But for our purpose
the integral will be more suitable.
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Oscillatory integrals

As t →∞ our integrand will oscillate faster and faster and hence is of
oscillatory type. By the method of stationary phase it is well-known that
the main contribution of such oscillatory integrals will come from the
stationary phase points. By this method on can get precise asymptotes of
the kernel along rays where v = |n−k|

t = const. However, we would rather
like an estimate which is uniform in n and k . Such a quantitative estimate
is provided by the van der Corput lemma. To this end we look at the
oscillatory integral ∫ b

a
A(θ)eitφ(θ)dθ,

where A(θ) is the amplitude and φ(θ) is the phase (which is assumed to
be real).

Gerald Teschl (University of Vienna) Dispersive Estimates Graz, 2014 29 / 66



The van der Corput lemma

Lemma

Suppose that φ is real-valued and l times differentiable with |φ(l)(θ)| ≥ 1
for θ ∈ [a, b] with φ′(θ) monotonic if l = 1. Then there is a universal
constantn cl (independent of a, b, and φ) such that∣∣∣∣∫ b

a
eitφ(θ)dθ

∣∣∣∣ ≤ cl
t1/l

for t > 0.

Note: If |φ(l)(θ)| ≥ δ > 0 we can scale t and φ and the estimate reads∣∣∣∣∫ b

a
eitφ(θ)dθ

∣∣∣∣ ≤ cl
(δt)1/l

.
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The van der Corput lemma

Proof.

Denote the integral by I (t). We will use induction and begin with l = 1.
Integration by parts shows

I (t) =

∫ b

a

1

itφ′(θ)

(
d

dθ
eitφ(θ)

)
dθ

=
1

itφ′(θ)
eitφ(θ)

∣∣∣∣b
a

− 1

it

∫ b

a

(
d

dθ

1

φ′(θ)

)
eitφ(θ)dθ

and estimating the absolute value gives

t|I (t)| ≤ 1

|φ′(b)|
+

1

|φ′(a)|
+

∫ b

a

∣∣∣∣ d

dθ

1

φ′(θ)

∣∣∣∣ dθ

= |φ′(b)|−1 + |φ′(a)|−1 + |φ′(b)−1 − φ′(a)−1| ≤ 2.

This shows the case l = 1 with c1 = 2.
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The van der Corput lemma

Proof (Cont.).

Now suppose |φ(l+1)(θ)| ≥ 1. Then there can be at most one point
θ0 ∈ [a, b] with φ(l)(θ0) = 0 and we have |φ(l)(θ)| ≥ δ for |θ − θ0| ≥ δ. If
there is no such point we can scale φ such that we can apply the lemma
for l . Now split I (t) = I1(t) + I2(t) where I1 is the integral over
(a, θ0 − δ) ∪ (θ0 − δ, b) and I2 the integral over (θ0 − δ, θ0 − δ). Then

|I1(t)| ≤ 2cl
(δt)1/l

and |I1(t)| ≤ 2δ,

where we have used the induction hypothesis for both parts of the first
integral. Choosing δ = t−1/(l+1), to balance both contributions, finishes
the proof with cl+1 = 2(1 + cl).
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The `1 → `∞ decay

Theorem

For the time evolution of the free discrete Schrödinger equation the
following dispersive decay estimate holds:

‖e−itH0‖`1→`∞ = O(t−1/3), t →∞.
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The `1 → `∞ decay

Proof.

We set v := |n − k |/t ≥ 0. Then Kn,k(t) is a oscillatory integral with the
phase function

φv (θ) = 2− 2 cos θ + vθ.

Then, since φ′′v (θ) = 2 cos(θ) and φ′′′v (θ) = −2 sin(θ), we can split our
domain of integration into four intervals where either |φ′′v (θ)| ≥

√
2 or

|φ′′′v (θ)| ≥
√

2. Applying the van der Corput lemma on each interval gives
the desired claim.
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The `1 → `∞ decay

The above decay rate is “sharp” as can be seen from the following
well-known asymptotics of the Bessel function

Jt(t) ∼ t−1/3, t →∞.

In fact, the slowest decay happens precisely along the ray v = 2, where we
have a degenerate phase point with θ′2(−π/2) = θ′′2 (−π/2) = 0 and where
the van der Corput lemma with l = 3 is the best we can do. Away from
this ray we can apply the van der Corput lemma with l = 2 or l = 1 and
hence improve the decay rate. Moreover, this is the case when n and k are
restricted to a finite region or, as we will show next, are sufficiently
localized.

Gerald Teschl (University of Vienna) Dispersive Estimates Graz, 2014 35 / 66



The `2
σ → `2

−σ decay

Theorem

For the time evolution of the free discrete Schrödinger equation the
following dispersive decay estimate holds:

‖e−itH0‖`2
σ→`2

−σ
= O(t−1/2), t →∞, σ > 2/3.

Note: The claim holds for σ > 1/2 but the proof is significantly more
complicated.
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The `2
σ → `2

−σ decay

Proof.

The problematic direction which causes the slowest decay is v = 2, as
pointed out before. Hence we distinguish the two cases |n − k | ≤ t and
|n − k | ≥ t. In the region |n − k | ≤ t have v = |n − k |/t ≤ 1 and avoid
this degenerate phase point. Hence we can split the domain of integration
into the region [−π,−2π

3 ] ∪ [−π
3 ,

π
3 ] ∪ [ 3π

2 , π] where |φ′′v (θ)| ≥ 1 and

[−2π
3 ,−

π
3 ] ∪ [π3 ,

3π
2 ] where |φ′v (θ)| ≥

√
3− 1 > 0. Applying the van der

Corput lemma on each of these intervals we obtain the bound

sup
|n−k|≤t

∣∣Kn,k(t)
∣∣ ≤ Ct−1/2.

On the other hand, our previous proof implies

sup
|n−k|≥t

∣∣Kn,k(t)
∣∣ ≤ Ct−1/3 = Ct−1/2t1/6 ≤ Ct−1/2|n − k |1/6.
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The `2
σ → `2

−σ decay

Proof (Cont.).

From this the desired estimate follows since Kn,k = |n − k |α is bounded in
`2
σ → `2

−σ iff K̃n,k = (1 + |n|)−σ|n − k |α(1 + |k|)−σ is bounded in `2.
Finally,

∑
n,k

|K̃n,k |2 ≤
∑
n,k

(1+|n|)−2(σ−α)(1+|k |)−2(σ−α) =

(∑
n

(1 + |n|)−2(σ−α)

)2

shows that K̃ is Hilbert–Schmid (and hence bounded) if 2(σ− α) > 1. For
α = 1

6 we obtain σ > 3
2 .
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The 1d discrete Schrödinger equation

Now we would like to consider the perturbed Schrödinger equation

iu̇(t) = Hu(t), t ∈ R,

where
(Hu)n = (H0u)n + qnun, n ∈ Z.

We will assume that qn is real-valued and decays at |n| → ∞. In
particular, q ∈ `∞(Z) and thus H is a bounded self-adjoint operator in
`2(Z). The main difference now is that the underlying difference equation
Hu = zu can no longer be solved explicitly!
Despite this lack of explicit solvability we will still be able to show
qualitative features of the solutions. But first we will need a good formula
for the time evolution.
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Some spectral theory

We begin with some general remarks which are valid for an arbitrary
self-adjoint operator H in a Hilbert space H.
The most important observation in this case that in order to understand
the spectral features of H one needs to understands its resolvent

z 7→ RH(z) = (H − z)−1

which is an analytic map from the resolvent set ρ(H) ⊂ C to the set of
bounded operators from H to itself. Since the spectrum of a self-adjoint
operator is confined to the real line and hence the resolvent is analytic in
the upper and lower half planes. Because of

RH(z) = RH(z)∗

we can restrict our attention to the upper half space. Here we use the bar
for complex conjugation and the star for the adjoint operator.
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Some spectral theory

More specific, what needs to be understood is the limit of the resolvent as
z approaches the real line. To see this recall Stone’s formula.

Theorem

Let H be self-adjoint. Then

1

2πi

∫ λ2

λ1

(
RH(λ+ iε)−RH(λ− iε)

)
dλ

s→ 1

2

(
PH([λ1, λ2]) + PH((λ1, λ2))

)
strongly. Here PH(Ω) = χΩ(H) denotes the orthogonal projection onto the
set Ω ⊆ R associated with H (and χΩ(λ) is the characteristic function of
Ω).
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Some spectral theory

Proof.

By the spectral theorem we have fn(H)
s→ f (H) provided fn(λ)→ f (λ)

pointwise and ‖fn‖∞ ≤ C is uniformly bounded. Hence the problem
reduces to compute the limit of the associated functions:

1

2πi

∫ λ2

λ1

(
1

x − λ− iε
− 1

x − λ+ iε

)
dλ =

1

π

∫ λ2

λ1

ε

(x − λ)2 + ε2
dλ

=
1

π

(
arctan

(λ2 − x

ε

)
− arctan

(λ1 − x

ε

))
→ 1

2

(
χ[λ1,λ2](x) + χ(λ1,λ2)(x)

)
.
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Some spectral theory

In a similar fashion one establishes the following extension:

Theorem

Let H be self-adjoint. Then

1

2πi

∫
R

f (λ)
(
RH(λ+ iε)−RH(λ− iε)

)
dλ

s→ f (H)

for any bounded and continuous function f ∈ Cb(R).

In particular,

exp(−itH) = lim
ε↓0

1

2πi

∫
R
e−itλ

(
RH(λ+ iε)−RH(λ− iε)

)
dλ

and everything boils down to understand the limits RH(λ± i0).
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Green’s function

For differential (or difference) equations the resolvent is an integral
(summation) operator whose kernel is known as Green’s function. For our
discrete Schrödinger operator H this kernel is explicitly given by

Rn,m(z) = Rm,n(z) =
f +
n (z)f −m (z)

W (f +(z), f −(z))
, m ≤ n,

where f ±(z) are the (weak) solutions of the underlying difference equation
Hf = zf which are square summable near ±∞ and

Wn(f , g) = fngn+1 − fn+1gn

is the discrete Wronski determinant which can be easily seen to be
independent of n if f and g both solve Hf = zf .
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Jost solutions

To proceed further we will assume that q decays sufficiently fast.
q ∈ `1

1(Z) will be sufficient for our purpose. Under this assumption we
assume that there exist solutions of Hf = zf which asymptotically look
like the unperturbed solutions:

f ±n (θ) ∼ e∓inθ, n→ ±∞.

Here θ and z are related via

2− 2 cos θ = z

as before, normalized such that Im(θ) < 0.
If q is compactly supported this is obvious. In the general case use
Duhamel’s formula to obtain an integral equations for the perturbed
solutions in terms of the unperturbed ones. The trick here is to start the
summation not at a finite initial point but (at first formally) at ±∞. Then
show existence of solutions using the standard fix point iteration procedure
for Volterra-type equations.
Gerald Teschl (University of Vienna) Dispersive Estimates Graz, 2014 45 / 66



Jost solutions

If q is compactly supported, then f ±n (θ) will start out equal to the
unperturbed solutions and will start to pick up multiples of shifted
perturbed solutions as soon as we hit the support of q. This motivates the
following ansatz for the Jost solutions

f ±n (θ) = e∓iθn

(
1 +

±∞∑
m=±1

B±n,me
∓imθ

)
,

where B±n,m ∈ R. Moreover, inserting this into our equation on can get a
corresponding difference equation for B± and then use induction to show

|B±n,m| ≤ C±n

±∞∑
k=n+bm/2c

|qk |.
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Jost solutions

The estimate for B± shows that the decay of B± is directly related to the
decay of q. Moreover, f ±n (θ) is analytic for θ in the strip Im(θ) < 0,
−π ≤ Re(θ) ≤ π and continuously extends to the boundary Im(θ) = 0,
−π ≤ Re(θ) ≤ π. If we require further decay of q we can also control
derivatives on the boundary. For compact support we get even an analytic
extension to Im(θ) > 0.
Note: The limit Im(θ)→ 0 corresponds to the limit z → [0, 4] which is
precisely the continuous spectrum of H.
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The scattering relations

The case Im(θ) = 0 corresponds to the continuous spectrum z ∈ [0, 4]. In
particular, in this case the differential equation is real-valued and the
complex conjugate of a solution will again be a solution. But then f ±(θ)
and f ±(θ) = f ±(−θ) are four solutions of a second order equation which
cannot be linearly independent! This leads to the scattering relations

T (θ)f ±m (θ) = R∓(θ)f ∓m (θ) + f ∓m (−θ), θ ∈ [−π, π],

Physically f ∓m (−θ) can be interpreted as an incoming (from ∓∞) plane
wave which splits into a reflected wave R∓(θ)f ∓m (θ) and a transmitted
wave T (θ)f ±m (θ). The transmission and reflection coefficients can be
expressed in terms of Wronskians:

T (θ) =
2i sin θ

W (θ)
, R±(θ) = ±W±(θ)

W (θ)
.

with W (θ) = W (f +(θ), f −(θ)) and W±(θ) = W (f ∓(θ), f ±(−θ)).
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The kernel of the time evolution

Inserting everything into our abstract formula for exp(−itH)PH([0, 4]) we
obtain the following formula for its kernel

Kn,k(t) =
1

2π

∫ π

−π
e−itφv (θ)h+

n (θ)h−k (θ)T (θ)dθ, k ≤ n,

where φv (θ) = 2− 2 cos θ + vθ, v = |n−k|
t , is the phase function we

already know from the free case and h± capture the difference between the
free and perturbed solutions:

f ±n (θ) = e∓inh±n (θ).

If q = 0 we have h±n (θ) = 1 as well as T (θ) = 1 and we recover our
formula for the free case. Note that here we have added the projector
PH([0, 4]) onto the continuous spectrum [0, 4] and consequently ignored
the contribution from any possible eigenvalues (which are stationary
solutions and hence cannot exhibit decay).
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The Wiener algebra

However, in the perturbed case our oscillatory integral has a nontrivial
amplitude and we cannot apply the van der Corput lemma directly. The
key observation is that the amplitude is in the Wiener algebra, that is, its
Fourier coefficients are summable. While for h±n (θ) this is immediate from
summability of B±n,n+.. This also shows that W (θ) is in the Wiener algebra
and so will be W (θ)−1 by Wiener’s theorem provided W (θ) does not
vanish on [−π, π]. In fact energy conservation |T |2 + |R±|2 = 1 shows that
this can only happen on the boundary of the spectrum when sin(θ) = 0. In
this case, when W (θ) vanishes at one of the boundaries, one speaks of a
resonance. Moreover, varying just one value of q will immediately destroy
a resonance and hence this situation is not generic. Nevertheless, one can
still show that T (θ) is always in the Wiener algebra, but this is nontrivial.
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The van der Corput lemma again

Lemma

Consider the oscillatory integral

I (t) =

∫ π

−π
eitφ(θ)A(θ)dθ,

where φ(θ) is real-valued. If |φ(l)(θ)| ≥ 1 for some l ≥ 2 and A is in the
Wiener algebra, then

|I (t)| ≤ cl‖Â‖`1

t1/l
,

where cl is the same constant as in the van der Corput lemma.
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The van der Corput lemma again

Proof.

We insert A(θ) =
∑

p∈Z Âpe
ipθ, with Âp = (2π)−1

∫ π
−π A(θ)e−iθdθ, and

use Fubini to obtain

I (t) =

∫ π

−π
eitφ(θ)

∑
p∈Z

Âpe
ipθdθ =

∑
p∈Z

f̂pIp/t(t), Iv (t) =

∫ π

−π
eit(φ(θ)+vθ)dθ.

By the van der Corput lemma we have |Iv (t)| ≤ cl t
−1/s and hence

|I (t)| ≤
∑
p∈Z
|f̂p||Ip/t(t)| ≤ cl‖Â‖`1

t1/l

as claimed.
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The van der Corput lemma again

Lemma

Consider the oscillatory integral

I (t) =

∫ π

−π
eitφ(θ)A(θ)dθ,

where φ(θ) is real-valued. If |φ(l)(θ)| ≥ 1 for some l ≥ 2 and A is in the
Wiener algebra, then

|I (t)| ≤ cl‖Â‖`1

t1/l
,

where cl is the same constant as in the van der Corput lemma.
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The van der Corput lemma again

A few remarks about this lemma:

It cannot hold for l = 1 as the Fourier coefficients of an element in
the Wiener algebra can have arbitrary slow decay (consider lacunary
Fourier coefficients).

One can show that it does not hold for continuous functions.

This lemma is typically found for absolutely continuous functions
(when it can be proved using integration by parts). Neither version
implies the other.
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Dispersive decay estimates

As a consequence we obtain:

Theorem

Let q ∈ `1
1. Then the following dispersive decay estimates hold

‖e−itHPc(H)‖`1→`∞ = O(t−1/3), t →∞,

and
‖e−itHPc(H)‖`2

σ→`2
−σ

= O(t−1/2), t →∞, σ > 1/2,

where Pc(H) = PH([0, 4]) is the projection onto the continuous spectrum.

Note: The proof requires in fact one more trick! We need the Wiener
norm of h±n to be uniformly bounded with respect to n ∈ Z. However, this
is only true for n ∈ Z±. To get it for our amplitude one has to use the
scattering relations to turn h±n (θ) into linear combinations of h∓n (θ) and
h∓n (−θ).
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Interpolation

Out of these estimates one can get further estimates using some abstract
techniques. First of all we can use interpolation:
By self-adjointness of H we obtain that exp(−itH) : `2 → `2 is unitary and
in particular

‖e−itHPc(H)‖`2→`2 ≤ 1.

Interpolating between this and our `1 → `∞ estimate the Riesz–Thorin
theorem gives us the following estimate

‖e−itHPc(H)‖`p′→`p = O(t−1/3(1/p′−1/p))

for any p′ ∈ [1, 2] with 1
p + 1

p′ = 1.
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Strichartz estimates

Next we look at average decay in an Lp sense in stead of point wise
estimates with respect to t. To this end we introduce the following
space-time norms

‖F‖Lqt `pn =

(∫
‖F (t)‖q

`pn

)1/q

.

Then our previous estimates imply:
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Strichartz estimates

Theorem

Suppose q ∈ `1
1. Then we have the following estimates:

‖e−itHPc(H)f ‖Lqt `pn ≤ C‖f ‖`2
n
,

‖
∫

e−itHPc(H)F (s)ds‖`2
n
≤ C‖F‖

Lq
′

t `
p′
n
,

‖
∫

e−i(t−s)HPc(H)F (s)ds‖Lqt `pn ≤ C‖F‖
Lq
′

t `
p′
n
,

where p, q ≥ 2,
1

q
+

1

3p
≤ 1

6
,

and a prime denotes the corresponding dual index.
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Strichartz estimates

Proof.

To begin with we use the following variational characterization of our
space-time norms:

‖F‖Lqt `pn = sup
‖G‖

L
q′
t `

p′
n

=1

∣∣∣∣∣
∫ ∑

n

F (n, t)G (n, t)dt

∣∣∣∣∣
Then, using self-adjointness of H and Fubini∫ ∑

n

(exp(−itH)Pc f )nF (n, t)dt =
∑
n

fn

∫
(exp(−itH)PcF (t))ndt,

which shows that the first and second estimate are equivalent upon using
the above characterization.
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Strichartz estimates

Proof (Cont.).

Similarly, using again self-adjointness∥∥∥∥∫ exp(−itH)PcF (., t)dt

∥∥∥∥2

`2
n

=
∑
n

∫
exp(−itH)PcF (n, t)dt

∫
exp(−isH)PcF (n, s)ds

=
∑
n

∫
F (n, t)

∫
exp(−i(t − s)H)PcF (n, s)ds dt

which shows that the second and the third estimate are equivalent with a
similar argument as before.
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Strichartz estimates

Proof (Cont.).

Hence it remains to prove the last one. Applying Minkowski’s inequality
and our interpolation estimate we obtain

‖
∫

e−i(t−s)HPc(H)F (n, s)ds‖`pn ≤
∫
‖e−i(t−s)HPc(H)F (n, s)‖`pnds

≤ C

∫
1

|t − s|α
‖F (n, s)‖

`p
′

n
ds,

where α = (1/3)(1/p′ − 1/p). Now taking the ‖.‖Lqt norm on both sides
and using the Hardy–Littlewood–Sobolev inequality finishes the proof.

Note: There is also an abstract result by

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math.
120 (1998), 955–980.

which applies here. Note that one can apply the truncated version since
our kernels are bounded near t = 0.
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The dNLS equation

An important physical model is the discrete nonlinear Schrödinger (dNLS)
equation

iu̇(t) = Hu(t)± |u(t)|2pu(t), t ∈ R,

which arises in many physical applications.
The above estimates are typically used to show solvability of this equation.
However, in the discrete case the situation is simpler.
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The dNLS equation

Theorem

The Cauchy problem for the discrete nonlinear Schrödinger equation has a
unique global norm preserving solution in `2(Z).
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The dNLS equation

Proof.

First of all we can regard the right-hand side as a C 1 vector field in the
Hilbert space `2(Z). Hence the standard Picard–Lindelöf theorem shows
existence of a unique global solution. To show that this solution is in fact
global observe

d

dt
‖u(t)‖2

`2 = 0.

Hence the `2 norm is preserved and cannot blow up.

Note that in the above argument `2 can be replaced by weighted versions
(as long as the weight is at most exponential) but the corresponding
norms will no longer be preserved. However, using

d

dt
|un(t)|2 = 2Im

(
un(un+1 + un−1)

)
plus Gronwall’s inequality these norms can grow at most linearly.
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The dNLS equation

Another application is stability of soliton solutions.

P. G. Kevrekidis, D. E. Pelinovsky, and A. Stefanov, Asymptotic
stability of small bound states in the discrete nonlinear Schrödinger
equation SIAM J. Math. Anal. 41 (2009), 2010–2030.

Idea: Using nonlinear functional analysis there is a solution of the
stationary dNLS equation of the type

e−itωφn(ω)

bifurcating from an eigenvalue of the Schrödinger equation Hφ = ωφ.
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The dNLS equation

Now make the ansatz

u(t) = e−iθ(t)
(
φ(ω(t)) + z(t)

)
.

Then the linearized system for v = Re(z) and w = Im(z) can be shown to
have double eigenvalue and the solution can decomposed with respect to
the generalized eigenvectors. Then, using the Strichartz and some
additional estimates proved using them, one can show that the resulting
system has a global solution provided the initial conditions are close to the
stationary solution. Moreover, ‖z(t)‖∞ → 0 and the parameters θ(t) and
ω(t) are asymptotically linear, constant, respectively. The details are
however quite tedious.
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