Evolution reaction-diffusion systems with positivity and mass control:
 Global existence, Singular perturbations, $L^{\infty}, L^{p}, L^{1}, L^{2}$ approaches

Michel Pierre

Ecole Normale Supérieure de Rennes
and Institut de Recherche Mathématique de Rennes, France
Summerschool
Analysis and Applications of Partial Differential Equations
Graz, Austria, September 08-11, 2014

Goals of the talk:

- (1) To understand global existence in time for reaction-diffusion systems which have two main properties:
- positivity of the solutions is preserved
- the total mass of the solution is controlled
($\Rightarrow L^{1}$ a priori estimate uniform in time)

Goals of the talk:

- (1) To understand global existence in time for reaction-diffusion systems which have two main properties:
- positivity of the solutions is preserved
- the total mass of the solution is controlled ($\Rightarrow L^{1}$ a priori estimate uniform in time)
- This will exploit these L^{1} estimates, but will also rely on L^{p} and L^{2} estimates

Goals of the talk:

- (1) To understand global existence in time for reaction-diffusion systems which have two main properties:
- positivity of the solutions is preserved
- the total mass of the solution is controlled ($\Rightarrow L^{1}$ a priori estimate uniform in time)
- This will exploit these L^{1} estimates, but will also rely on L^{p} and L^{2} estimates
- (2) To apply the same L^{2}-estimates to the description of fast-reaction limits in some chemical systems and to existence questions for some cross-diffusion systems.

An easy O.D.E.

$$
\left\{\begin{array}{l}
u^{\prime}=-u v^{\beta}, \\
v^{\prime}=u v^{\beta} \\
u(0)=u_{0} \geq 0, v(0)=v_{0} \geq 0, \\
u_{0}, v_{0} \text { given in }[0, \infty),
\end{array}\right.
$$

where $u, v:[0, T) \rightarrow \boldsymbol{R}$ are the unknown functions. Here $\beta \geq 1$. Local existence of a nonnegative unique solution on a maximal interval $\left[0, T^{*}\right)$ is well-known due to the C^{1}-property of $(u, v) \rightarrow u v^{\beta}$. Moreover $u \geq 0, v \geq 0$ and

$$
(u+v)^{\prime}(t)=0 \Rightarrow(u+v)(t)=u_{0}+v_{0}
$$

so that: $\sup _{t \in\left[0, T^{*}\right)}|u(t)|+|v(t)|<+\infty$,
and therefore

$$
T^{*}=+\infty
$$

What happens when diffusion is added?

$$
\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=-u v^{\beta} \text { in } Q_{T}=(0, T) \times \Omega \\
\partial_{t} v-d_{2} \Delta v=u v^{\beta} \text { in } Q_{T}=(0, T) \times \Omega \\
\partial_{\nu} u=\partial_{\nu} v=0 \text { on } \Sigma_{T}=(0, T) \times \partial \Omega, \\
u(0)=u_{0} \geq 0, \quad v(0)=v_{0} \geq 0 .
\end{array}\right.
$$

Here $\Omega \subset \boldsymbol{R}^{N}$, regular. The total mass is preserved:

$$
\begin{gathered}
\int_{\Omega} \partial_{t}(u+v)-\int_{\Omega} \Delta\left(d_{1} u+d_{2} v\right)=0 . \\
\partial_{\nu}\left(d_{1} u+d_{2} v\right)=0 \text { on } \partial \Omega \Rightarrow \int_{\Omega} \Delta\left(d_{1} u+d_{2} v\right)=0 . \\
\int_{\Omega}(u+v)(t)=\int_{\Omega} u_{0}+v_{0}
\end{gathered}
$$

Insufficient for global existence!

Local existence for reaction－diffusion systems with L^{∞}－data

$$
(S)\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=-u v^{\beta} \text { on } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=u v^{\beta} \text { on } Q_{T} \\
\partial_{\nu} u=\partial_{\nu} v=0 \text { on } \Sigma_{T} \\
u(0)=u_{0} \geq 0, \quad v(0)=v_{0} \geq 0
\end{array}\right.
$$

－Theorem（ L^{∞}－approach）：Let $u_{0}, v_{0} \in L^{\infty}(\Omega)$ ，
$u_{0} \geq 0, v_{0} \geq 0$ ．Then，there exist a maximum time $T^{*}>0$ and (u, v) unique classical nonnegative solution of (S) on ［ $0, T^{*}$［．Moreover，

$$
\sup _{t \in\left[0, T^{*}[\right.}\left\{\|u(t)\|_{L^{\infty}(\Omega)}+\|v(t)\|_{L^{\infty}(\Omega)}\right\}<+\infty \Rightarrow\left[T^{*}+\infty\right]
$$

Local existence for reaction-diffusion systems with L^{∞}-data

$$
(S)\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=-u v^{\beta} \text { on } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=u v^{\beta} \text { on } Q_{T} \\
\partial_{\nu} u=\partial_{\nu} v=0 \text { on } \Sigma_{T} \\
u(0)=u_{0} \geq 0, \quad v(0)=v_{0} \geq 0
\end{array}\right.
$$

- Theorem (L^{∞}-approach): Let $u_{0}, v_{0} \in L^{\infty}(\Omega)$, $u_{0} \geq 0, v_{0} \geq 0$. Then, there exist a maximum time $T^{*}>0$ and (u, v) unique classical nonnegative solution of (S) on [$0, T^{*}$. Moreover,

$$
\sup _{t \in\left[0, T^{*}[\right.}\left\{\|u(t)\|_{L^{\infty}(\Omega)}+\|v(t)\|_{L^{\infty}(\Omega)}\right\}<+\infty \Rightarrow\left[T^{*}+\infty\right]
$$

- By maximum principle: $\|u(t)\|_{L^{\infty}(\Omega)} \leq\left\|u_{0}\right\|_{L^{\infty}(\Omega)}$. But, what about $v(t)$?

Local existence for reaction-diffusion systems with L^{∞}-data

$$
(S)\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=-u v^{\beta} \text { on } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=u v^{\beta} \text { on } Q_{T} \\
\partial_{\nu} u=\partial_{\nu} v=0 \text { on } \Sigma_{T} \\
u(0)=u_{0} \geq 0, \quad v(0)=v_{0} \geq 0
\end{array}\right.
$$

- Theorem (L^{∞}-approach): Let $u_{0}, v_{0} \in L^{\infty}(\Omega)$, $u_{0} \geq 0, v_{0} \geq 0$. Then, there exist a maximum time $T^{*}>0$ and (u, v) unique classical nonnegative solution of (S) on [$0, T^{*}$ [. Moreover,

$$
\sup _{t \in\left[0, T^{*}[\right.}\left\{\|u(t)\|_{L^{\infty}(\Omega)}+\|v(t)\|_{L^{\infty}(\Omega)}\right\}<+\infty \Rightarrow\left[T^{*}+\infty\right]
$$

- By maximum principle: $\|u(t)\|_{L^{\infty}(\Omega)} \leq\left\|u_{0}\right\|_{L^{\infty}(\Omega)}$. But, what about $v(t)$?
- If $d_{1}=d_{2}: \partial_{t}(u+v)-d_{1} \Delta(u+v)=0$,

$$
\Rightarrow\|u(t)+v(t)\|_{L^{\infty}(\Omega)} \leq\left\|u_{0}+v_{0}\right\|_{L^{\infty}(\Omega)}
$$

$$
\Rightarrow T^{*}=+\infty!
$$

Local existence for reaction-diffusion systems with L^{∞}-data

$$
(S)\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=-u v^{\beta} \text { on } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=u v^{\beta} \text { on } Q_{T} \\
\partial_{\nu} u=\partial_{\nu} v=0 \text { on } \Sigma_{T} \\
u(0)=u_{0} \geq 0, v(0)=v_{0} \geq 0 .
\end{array}\right.
$$

What if $d_{1} \neq d_{2}$?
Remark: here $\int_{\Omega}(u+v)(t)=\int_{\Omega} u_{0}+v_{0}$, that is

$$
\sup _{t \in\left[0, T^{*}[\right.}\left\{\|u(t)\|_{L^{1}(\Omega)},\|v(t)\|_{L^{1}(\Omega)}\right\} \leq\left\|u_{0}\right\|_{L^{1}(\Omega)}+\left\|v_{0}\right\|_{L^{1}(\Omega)} .
$$

How does this estimate help for global existence? Very frequent situation in applications !

Same question for the general family of systems:

$$
\begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

$d_{i}>0, f_{i}:[0, \infty)^{m} \rightarrow \boldsymbol{R}$ of class C^{1} where

- (P): Positivity (nonnegativity) is preserved

Same question for the general family of systems:

$$
\begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

$d_{i}>0, f_{i}:[0, \infty)^{m} \rightarrow \boldsymbol{R}$ of class C^{1} where

- (P): Positivity (nonnegativity) is preserved
-(M): $\sum_{1 \leq i \leq m} f_{i} \leq 0$ or more generally

Same question for the general family of systems:

$$
\begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

$d_{i}>0, f_{i}:[0, \infty)^{m} \rightarrow \boldsymbol{R}$ of class C^{1} where

- (P): Positivity (nonnegativity) is preserved
-(M): $\sum_{1 \leq i \leq m} f_{i} \leq 0$ or more generally
- (M') $\forall r \in\left[0, \infty\left[{ }^{m}, \sum_{1 \leq i \leq m} a_{i} f_{i}(r) \leq C\left[1+\sum_{1 \leq i \leq m} r_{i}\right]\right.\right.$ for some $a_{i}>0$

$$
(E) \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

- (P) Preservation of Positivity (quasipositivity): $\forall i=1, \ldots, m$ $\forall r=\left(r_{1}, \ldots, r_{m}\right) \in\left[0, \infty\left[{ }^{m}, f_{i}\left(r_{1}, \ldots, r_{i-1}, 0, r_{i+1}, \ldots, r_{m}\right) \geq 0\right.\right.$.

$$
\begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 & \end{cases}
$$

- (P) Preservation of Positivity $\forall i=1, \ldots, m$ $\forall r \in\left[0,+\infty\left[{ }^{m}, \quad f_{i}\left(r_{1}, \ldots, r_{i-1}, 0, r_{i+1}, \ldots, r_{m}\right) \geq 0\right.\right.$.
- (M): $\sum_{1 \leq i \leq m} f_{i}\left(r_{1}, \ldots, r_{m}\right) \leq 0 \Rightarrow$ 'Control of the Total Mass':

$$
\forall t \geq 0, \quad \int_{\Omega} \sum_{1 \leq i \leq r} u_{i}(t, x) d x \leq \int_{\Omega} \sum_{1 \leq i \leq r} u_{i}^{0}(x) d x
$$

Add up, integrate on Ω, use $\int_{\Omega} \Delta u_{i}=\int_{\partial \Omega} \partial_{\nu} u_{i}=0$:

$$
\int_{\Omega} \partial_{t}\left[\sum u_{i}(t)\right] d x=\int_{\Omega} \sum_{i} f_{i}(u) d x \leq 0 .
$$

$$
\begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 & \end{cases}
$$

- (P) Preservation of Positivity $\forall i=1, \ldots, m$ $\forall r \in\left[0,+\infty\left[{ }^{m}, \quad f_{i}\left(r_{1}, \ldots, r_{i-1}, 0, r_{i+1}, \ldots, r_{m}\right) \geq 0\right.\right.$.
- (M): $\sum_{1 \leq i \leq m} f_{i}\left(r_{1}, \ldots, r_{m}\right) \leq 0 \Rightarrow$ 'Control of the Total Mass':

$$
\forall t \geq 0, \quad \int_{\Omega} \sum_{1 \leq i \leq r} u_{i}(t, x) d x \leq \int_{\Omega} \sum_{1 \leq i \leq r} u_{i}^{0}(x) d x
$$

Add up, integrate on Ω, use $\int_{\Omega} \Delta u_{i}=\int_{\partial \Omega} \partial_{\nu} u_{i}=0$:

$$
\int_{\Omega} \partial_{t}\left[\sum u_{i}(t)\right] d x=\int_{\Omega} \sum_{i} f_{i}(u) d x \leq 0 .
$$

- $\Rightarrow L^{1}(\Omega)$ - a priori estimates, uniform in time $\left(t \in\left[0, T^{*}\right)\right)$.

$$
\begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 & \end{cases}
$$

- (P) Preservation of Positivity $\forall i=1, \ldots, m$ $\forall r \in\left[0,+\infty\left[{ }^{m}, \quad f_{i}\left(r_{1}, \ldots, r_{i-1}, 0, r_{i+1}, \ldots, r_{m}\right) \geq 0\right.\right.$.
- (M): $\sum_{1 \leq i \leq m} f_{i}\left(r_{1}, \ldots, r_{m}\right) \leq 0 \Rightarrow$ 'Control of the Total Mass':

$$
\forall t \geq 0, \quad \int_{\Omega} \sum_{1 \leq i \leq r} u_{i}(t, x) d x \leq \int_{\Omega} \sum_{1 \leq i \leq r} u_{i}^{0}(x) d x
$$

Add up, integrate on Ω, use $\int_{\Omega} \Delta u_{i}=\int_{\partial \Omega} \partial_{\nu} u_{i}=0$:

$$
\int_{\Omega} \partial_{t}\left[\sum u_{i}(t)\right] d x=\int_{\Omega} \sum_{i} f_{i}(u) d x \leq 0 .
$$

- $\Rightarrow L^{1}(\Omega)$ - a priori estimates, uniform in time $\left(t \in\left[0, T^{*}\right)\right)$.
- Remark: same with (M')

QUESTION:
 What about Global Existence of solutions

under assumption $(\mathbf{P})+(\mathrm{M}) ? ?$

or more generally (P)+(M') ??

Remarks: Global existence holds for the associated ODE. Global existence holds for the full system if all the d_{i} are equal since then, by maximum principle
$\left\|\sum_{i} u_{i}(t)\right\|_{L^{\infty}(\Omega)} \leq\left\|\sum_{i} u_{i}(0)\right\|_{L^{\infty}(\Omega)}$.

Explicit examples with property $(\mathbf{P})+(\mathrm{M})$ or $\left(\mathrm{M}^{\prime}\right)$

"Chemical morphogenetic process ("Brusselator", R.
Lefever-I. Prigogine-G. Nicolis)

$$
\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=-u v^{2}+b v \\
\partial_{t} v-d_{2} \Delta v=u v^{2}-(b+1) v+a \\
u_{\mid \partial \Omega}=b / a, v_{\mid \partial \Omega}=a \\
a, b, d_{1}, d_{2}>0
\end{array}\right.
$$

Explicit examples with property $(\mathbf{P})+\left(\mathbf{M}^{\prime}\right)$

- "Chemical morphogenetic process ("Brusselator", R. Lefever-I. Prigogine-G. Nicolis)

$$
\left\{\begin{aligned}
\partial_{t} u-d_{1} \Delta u & =-u v^{2}+b v \\
\partial_{t} v-d_{2} \Delta v & =u v^{2}-(b+1) v+a
\end{aligned}\right.
$$

See also: Glycolosis model-Gray-Scott models

Explicit examples with property $(\mathbf{P})+\left(\mathbf{M}^{\prime}\right)$

- "Chemical morphogenetic process ("Brusselator", R. Lefever-I. Prigogine-G. Nicolis)

$$
\left\{\begin{aligned}
\partial_{t} u-d_{1} \Delta u & =-u v^{2}+b v \\
\partial_{t} v-d_{2} \Delta v & =u v^{2}-(b+1) v+a
\end{aligned}\right.
$$

See also: Glycolosis model-Gray-Scott models

- Exothermic combustion in a gas

$$
\left\{\begin{aligned}
\partial_{t} Y-\mu \Delta Y & =-H(Y, T) \\
\partial_{t} T-\lambda \Delta T & =q H(Y, T)
\end{aligned}\right.
$$

$Y=$ concentration of a reactant, $T=$ temperature,

Explicit examples with $(\mathbf{P})+\left(\mathrm{M}^{\prime}\right)$

- Lotka-Volterra Systems

$$
\forall i=1 \ldots m, \quad \partial_{t} u_{i}-d_{i} \Delta u_{i}=e_{i} u_{i}+u_{i} \sum_{1 \leq j \leq m} p_{i j} u_{j}
$$

with $e_{i}, p_{i j} \in \boldsymbol{R}$ such that for some $a_{i}>0$.

$$
\forall w \in[0, \infty)^{m}, \sum_{i, j=1}^{m} a_{i} w_{i} p_{i j} w_{j} \leq 0, \quad\left[\Rightarrow\left(\mathbf{M}^{\prime}\right)\right]
$$

Explicit examples with $(\mathbf{P})+\left(\mathrm{M}^{\prime}\right)$

- Lotka-Volterra Systems

$$
\forall i=1 \ldots m, \quad \partial_{t} u_{i}-d_{i} \Delta u_{i}=e_{i} u_{i}+u_{i} \sum_{1 \leq j \leq m} p_{i j} u_{j},
$$

with $e_{i}, p_{i j} \in R$ such that for some $a_{i}>0$.

$$
\forall w \in[0, \infty)^{m}, \sum_{i, j=1}^{m} a_{i} w_{i} p_{i j} w_{j} \leq 0, \quad\left[\Rightarrow\left(\mathbf{M}^{\prime}\right)\right]
$$

- Diffusive epidemic models: SIR
$S=$ Susceptibles= can be infected
$I=$ Infectives $=$ infected and transmit disease
$R=$ Removed $=$ immune; $P=S+I+R$

$$
\left\{\begin{array}{l}
S_{t}-\nabla \cdot d_{1}(x) \nabla S=b P-(m+k P) S-g(S, I) \\
I_{t}-\nabla \cdot d_{2}(x) \nabla I=-(m+k P) I+g(S, I)-\lambda I \\
R_{t}-\nabla \cdot d_{3}(x) \nabla R=-(m+k P) R+\lambda I
\end{array}\right.
$$

May be coupled with an extra variable: $S=S(t, x$, age $) \ldots$

Elementary chemical reactions: a simple example

$$
U_{1}+U_{2} \underset{\overrightarrow{k^{-}}}{\frac{k^{+}}{}} U_{3}
$$

Elementary chemical reactions: a simple example

$$
U_{1}+U_{2} \stackrel{k^{+}}{\stackrel{k^{-}}{-}} U_{3}
$$

- $u_{i}=$ concentration of U_{i}. Assume first $u_{i}=u_{i}(t)$ (independent of the spatial variable)

Elementary chemical reactions：a simple example

$$
U_{1}+U_{2} \stackrel{k^{+}}{\stackrel{k^{-}}{-}} U_{3}
$$

－$u_{i}=$ concentration of U_{i} ．Assume first $u_{i}=u_{i}(t)$ （independent of the spatial variable）
－Law of Mass Action：In each reaction，the instantaneous variation of concentration of each u_{i} is proportional to the concentration of the reactants：

$$
\frac{d}{d t} u_{1}=k^{-} u_{3}-k^{+} u_{1} u_{2}
$$

Elementary chemical reactions: a simple example

$$
U_{1}+U_{2} \stackrel{k^{+}}{\stackrel{k^{-}}{-}} U_{3}
$$

- $u_{i}=$ concentration of U_{i}. Assume first $u_{i}=u_{i}(t)$ (independent of the spatial variable)
- Law of Mass Action: In each reaction, the instantaneous variation of concentration of each u_{i} is proportional to the concentration of the reactants:

$$
\frac{d}{d t} u_{1}=k^{-} u_{3}-k^{+} u_{1} u_{2}
$$

- Whence the full system of O.D.E.:

$$
\begin{aligned}
& \frac{d}{d t} u_{1}=k^{-} u_{3}-k^{+} u_{1} u_{2} \\
& \frac{d}{d t} u_{2}=k^{-} u_{3}-k^{+} u_{1} u_{2} \\
& \frac{d}{d t} u_{3}=-k^{-} u_{3}+k^{+} u_{1} u_{2}
\end{aligned}
$$

Elementary chemical reactions: a simple example

$$
U_{1}+U_{2} \stackrel{k^{+}}{\stackrel{k^{-}}{=}} U_{3}
$$

Elementary chemical reactions: a simple example

$$
U_{1}+U_{2} \stackrel{k^{+}}{\stackrel{k^{-}}{=}} U_{3}
$$

- $u_{i}=u_{i}(t, x)=$ concentration of $U_{i}, \quad x \in \Omega \subset \boldsymbol{R}^{N}$

Elementary chemical reactions：a simple example

$$
U_{1}+U_{2} \stackrel{k^{+}}{\stackrel{k^{-}}{=}} U_{3}
$$

－$u_{i}=u_{i}(t, x)=$ concentration of $U_{i}, \quad x \in \Omega \subset \boldsymbol{R}^{N}$
－Instantaneous variation of $u_{i}: \partial_{t} u_{i}+\nabla \cdot\left(u_{i} \mathbf{V}_{\mathbf{i}}\right)$ where $\mathbf{V}_{\mathbf{i}}=$ velocity of the particule U_{i}

Elementary chemical reactions：a simple example

$$
U_{1}+U_{2} \stackrel{k^{+}}{\underset{k^{-}}{\rightleftharpoons}} U_{3}
$$

－$u_{i}=u_{i}(t, x)=$ concentration of $U_{i}, \quad x \in \Omega \subset \boldsymbol{R}^{N}$
－Instantaneous variation of $u_{i}: \partial_{t} u_{i}+\nabla \cdot\left(u_{i} \mathbf{V}_{\mathbf{i}}\right)$ where $\mathbf{V}_{\mathbf{i}}=$ velocity of the particule U_{i}
－Law of Mass Action：it is proportional to the concentration of the reactants：

$$
\partial_{t} u_{1}+\nabla \cdot\left(u_{1} \mathbf{V}_{1}\right)=k^{-} u_{3}-k^{+} u_{1} u_{2}
$$

Elementary chemical reactions: a simple example

$$
U_{1}+U_{2} \stackrel{k^{+}}{\stackrel{k^{-}}{=}} U_{3}
$$

- $u_{i}=u_{i}(t, x)=$ concentration of $U_{i}, \quad x \in \Omega \subset \boldsymbol{R}^{N}$
- Instantaneous variation of $u_{i}: \partial_{t} u_{i}+\nabla \cdot\left(u_{i} \mathbf{V}_{\mathbf{i}}\right)$ where $\mathbf{V}_{\mathbf{i}}=$ velocity of the particule U_{i}
- Law of Mass Action: it is proportional to the concentration of the reactants:

$$
\partial_{t} u_{1}+\nabla \cdot\left(u_{1} \mathbf{V}_{1}\right)=k^{-} u_{3}-k^{+} u_{1} u_{2}
$$

- Fick's diffusion law:

$$
\mathbf{u}_{1} \mathbf{V}_{1}=-d_{1} \nabla u_{1} \Rightarrow \nabla \cdot\left(u_{1} \mathbf{V}_{1}\right)=-d_{1} \Delta u_{1}
$$

Elementary chemical reactions: a simple example

$$
U_{1}+U_{2} \stackrel{k^{+}}{\underset{k^{-}}{\rightleftharpoons}} U_{3}
$$

- $u_{i}=u_{i}(t, x)=$ concentration of $U_{i}, \quad x \in \Omega \subset \mathbb{R}^{N}$
- Instantaneous variation of $u_{i}: \partial_{t} u_{i}+\nabla \cdot\left(u_{i} \mathbf{V}_{\mathbf{i}}\right)$ where $\mathbf{V}_{\mathbf{i}}=$ velocity of the particule U_{i}
- Law of Mass Action: it is proportional to the concentration of the reactants:

$$
\partial_{t} u_{1}+\nabla \cdot\left(u_{1} \mathbf{V}_{1}\right)=k^{-} u_{3}-k^{+} u_{1} u_{2}
$$

- Fick's diffusion law:

$$
\mathbf{u}_{1} \mathbf{V}_{\mathbf{1}}=-d_{1} \nabla u_{1} \Rightarrow \nabla \cdot\left(u_{1} \mathbf{V}_{1}\right)=-d_{1} \Delta u_{1}
$$

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-k^{+} u_{1} u_{2}+k^{-} u_{3} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-k^{+} u_{1} u_{2}+k^{-} u_{3} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=k^{+} u_{1} u_{2}-k^{-} u_{3}
\end{array}\right.
$$

Note : $f_{1}+f_{2}+2 f_{3}=0$ and positivity is preserved.

A quadratic model

$$
U_{1}+U_{2} \stackrel{k^{+}}{\stackrel{k^{-}}{*}} U_{3}+U_{4}
$$

$$
\left\{\begin{aligned}
\partial_{t} u_{1}-d_{1} \Delta u_{1} & =-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2} & =-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3} & =k^{+} u_{1} u_{2}-k^{-} u_{3} u_{4} \\
\partial_{t} u_{4}-d_{4} \Delta u_{4} & =k^{+} u_{1} u_{2}-k^{-} u_{3} u_{4}
\end{aligned}\right.
$$

Note: $f_{1}+f_{2}+f_{3}+f_{4}=0$ and positivity is preserved.

Superquadratic reaction-diffusion systems.

- A general chemical reaction:

$$
p_{1} U_{1}+p_{2} U_{2}+\ldots+p_{m} U_{m} \stackrel{k^{+}}{\stackrel{\rightharpoonup}{k^{-}}} q_{1} U_{1}+q_{2} U_{2}+\ldots+q_{m} U_{m}
$$

$p_{i}, q_{i}=$ nonnegative integers.

Superquadratic reaction-diffusion systems.

- A general chemical reaction:

$$
p_{1} U_{1}+p_{2} U_{2}+\ldots+p_{m} U_{m} \stackrel{k^{+}}{\stackrel{k^{-}}{\rightleftharpoons}} q_{1} U_{1}+q_{2} U_{2}+\ldots+q_{m} U_{m}
$$

$p_{i}, q_{i}=$ nonnegative integers.

$$
\partial_{t} u_{i}-d_{i} \Delta u_{i}=\left(p_{i}-q_{i}\right)\left(k^{-} \Pi_{j=1}^{m} u_{j}^{q_{j}}-k^{+} \Pi_{j=1}^{m} u_{j}^{p_{j}}\right), \forall i=1 \ldots m .
$$

Superquadratic reaction-diffusion systems.

- A general chemical reaction:

$$
p_{1} U_{1}+p_{2} U_{2}+\ldots+p_{m} U_{m} \stackrel{k^{+}}{\stackrel{\stackrel{k^{-}}{*}}{2}} q_{1} U_{1}+q_{2} U_{2}+\ldots+q_{m} U_{m}
$$

$p_{i}, q_{i}=$ nonnegative integers.

$$
\partial_{t} u_{i}-d_{i} \Delta u_{i}=\left(p_{i}-q_{i}\right)\left(k^{-} \Pi_{j=1}^{m} u_{j}^{q_{j}}-k^{+} \Pi_{j=1}^{m} u_{j}^{p_{j}}\right), \forall i=1 \ldots m .
$$

- Here $\sum_{i} m_{i} p_{i}=\sum_{i} m_{i} q_{i}$ for some $m_{i} \in(0, \infty), i=1 \ldots m$. This implies (M'): $\sum_{i=1}^{m} m_{i} f_{i}=0$.

Superquadratic reaction-diffusion systems.

- A general chemical reaction:

$$
p_{1} U_{1}+p_{2} U_{2}+\ldots+p_{m} U_{m} \stackrel{k^{+}}{\stackrel{k^{-}}{\rightleftharpoons}} q_{1} U_{1}+q_{2} U_{2}+\ldots+q_{m} U_{m}
$$

$p_{i}, q_{i}=$ nonnegative integers.

$$
\partial_{t} u_{i}-d_{i} \Delta u_{i}=\left(p_{i}-q_{i}\right)\left(k^{-} \Pi_{j=1}^{m} u_{j}^{q_{j}}-k^{+} \Pi_{j=1}^{m} u_{j}^{p_{j}}\right), \forall i=1 \ldots m .
$$

- Here $\sum_{i} m_{i} p_{i}=\sum_{i} m_{i} q_{i}$ for some $m_{i} \in(0, \infty), i=1 \ldots m$. This implies (M'): $\sum_{i=1}^{m} m_{i} f_{i}=0$.
- Global existence in general ?

Models in electromigration (Nernst-Planck)

$$
\left\{\begin{array}{l}
\partial_{t} c_{i}-d_{i} \operatorname{div}\left(\nabla c_{i}+z_{i} c_{i} \nabla \Phi\right)=f_{i}(c) \text { in } Q \\
-\Delta \Phi=\sum_{i=1}^{m} z_{i} c_{i} \text { in } Q \\
+ \text { initial and boundary conditions. }
\end{array}\right.
$$

$c_{i}=c_{i}(t, x)=$ concentration of ionized species
with charge number $z_{i} \in \boldsymbol{R}$
Φ is the electrical potential
The nonlinearity f_{i} have the same structure (reversible chemical reactions).
see Amann-Renardy, Gajewski-Glitzsky-Gröger-Hünlich, Choi-Lui, Biler-Dolbeault, Hebisch-Nadzieja, Bothe-Fischer-Saal, Bothe-Fischer-P.-Rolland,...

Models with degenerate diffusion

- Modelization of pollutants transfer in atmospher ($N=3$): W. Fitzgibbon-M. Langlais-J. Morgan,R. Texier-PicardMP:

$$
\left\{\begin{array}{l}
\partial_{t} \phi_{i}=d_{i} \partial_{z z}^{2} \phi_{i}+\omega \cdot \nabla \phi_{i}+f_{i}(\phi)+g_{i}, \forall i=1 \ldots 20, \\
+ \text { Bdy and initial conditions }
\end{array}\right.
$$

Models with degenerate diffusion

- Modelization of pollutants transfer in atmospher
($N=3$): W. Fitzgibbon-M. Langlais-J. Morgan,R. Texier-PicardMP:

$$
\left\{\begin{array}{l}
\partial_{t} \phi_{i}=d_{i} \partial_{z z}^{2} \phi_{i}+\omega \cdot \nabla \phi_{i}+f_{i}(\phi)+g_{i}, \forall i=1 \ldots 20 \\
+ \text { Bdy and initial conditions }
\end{array}\right.
$$

- The reaction terms:

$$
\begin{aligned}
& \int f_{1}(\phi)=-k_{1} \phi_{1}+k_{22} \phi_{19}+k_{25} \phi_{20}+k_{11} \phi_{13}+k_{9} \phi_{11} \phi_{2}+k_{3} \phi_{5} \phi_{2} \\
& +k_{2} \phi_{2} \phi_{4}-k_{23} \phi_{1} \phi_{4}-k_{14} \phi_{1} \phi_{6}+k_{12} \phi_{10} \phi_{2}-k_{10} \phi_{11} \phi_{1}-k_{24} \phi_{19} \phi_{1} \text {, } \\
& f_{2}(\phi)=k_{1} \phi_{1}+k_{21} \phi_{19}-k_{9} \phi_{11} \phi_{2}-k_{3} \phi_{5} \phi_{2}-k_{2} \phi_{2} \phi_{4}-k_{12} \phi_{10} \phi_{2} \\
& f_{3}(\phi)=k_{1} \phi_{1}+k_{17} \phi_{4}+k_{19} \phi_{16}+k_{22} \phi_{19}-k_{15} \phi_{3} \\
& f_{4}(\phi)=-k_{17} \phi_{4}+k_{15} \phi_{3}-k_{16} \phi_{4}-k_{2} \phi_{2} \phi_{4}-k_{23} \phi_{1} \phi_{4} \\
& f_{5}(\phi)=2 k_{4} \phi_{7}+k_{7} \phi_{9}+k_{13} \phi_{14}+k_{6} \phi_{7} \phi_{6}-k_{3} \phi_{5} \phi_{2}+k_{20} \phi_{17} \phi_{6} \\
& f_{6}(\phi)=2 k_{18} \phi_{16}-k_{8} \phi_{9} \phi_{6}-k_{6} \phi_{7} \phi_{6}+k_{3} \phi_{5} \phi_{2}-k_{20} \phi_{17} \phi_{6}-k_{14} \phi_{1} \phi_{6} \\
& f_{7}(\phi)=-k_{4} \phi_{7}-k_{5} \phi_{7}+k_{13} \phi_{14}-k_{6} \phi_{7} \phi_{6} \\
& f_{8}(\phi)=k_{4} \phi_{7}+k_{5} \phi_{7}+k_{7} \phi_{9}+k_{6} \phi_{7} \phi_{6} \\
& f_{9}(\phi)=-k_{7} \phi_{9}-k_{8} \phi_{9} \phi_{6} \\
& f_{10}(\phi)=k_{7} \phi_{9}+k_{9} \phi_{11} \phi_{2}-k_{12} \phi_{10} \phi_{2} \\
& f_{11}(\phi)=k_{11} \phi_{13}-k_{9} \phi_{11} \phi_{2}+k_{8} \phi_{9} \phi_{6}-k_{10} \phi_{11} \phi_{1} \\
& f_{12}(\phi)=k_{9} \phi_{11} \phi_{2} \\
& f_{13}(\phi)=-k_{11} \phi_{13}+k_{10} \phi_{11} \phi_{1} \\
& f_{14}(\phi)=-k_{13} \phi_{14}+k_{12} \phi_{10} \phi_{2} \\
& f_{15}(\phi)=k_{14} \phi_{1} \phi_{6} \\
& f_{16}(\phi)=-k_{19} \phi_{16}-k_{18} \phi_{16}+k_{16} \phi_{4} \\
& f_{17}(\phi)=-k_{20} \phi_{17} \phi_{6} \\
& f_{18}(\phi)=k_{20} \phi_{17} \phi_{6} \\
& f_{19}(\phi)=-k_{21} \phi_{19}-k_{22} \phi_{19}+k_{25} \phi_{20}+k_{23} \phi_{1} \phi_{4}-k_{24} \phi_{19} \phi_{1} \\
& f_{20}(\phi)=-k_{25} \phi_{20}+k_{24} \phi_{19} \phi_{1} \text {. }
\end{aligned}
$$

Back to the model example: what about L^{∞}-estimates?

$$
(S)\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=-u v^{\beta} \text { on } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=u v^{\beta} \text { on } Q_{T} \\
\partial_{\nu} u=\partial_{\nu} v=0 \text { on } \Sigma_{T} \\
u(0)=u_{0} \geq 0, \quad v(0)=v_{0} \geq 0
\end{array}\right.
$$

By maximum principle

$$
\partial_{t} u-d_{1} \Delta u \leq 0 \Rightarrow\|u(t)\|_{L^{\infty}(\Omega)} \leq\left\|u_{0}\right\|_{L^{\infty}(\Omega)}
$$

Back to the model example: what about L^{∞}-estimates?

$$
(S)\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=-u v^{\beta} \text { on } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=u v^{\beta} \text { on } Q_{T} \\
\partial_{\nu} u=\partial_{\nu} v=0 \text { on } \Sigma_{T} \\
u(0)=u_{0} \geq 0, \quad v(0)=v_{0} \geq 0
\end{array}\right.
$$

By maximum principle

$$
\partial_{t} u-d_{1} \Delta u \leq 0 \Rightarrow\|u(t)\|_{L^{\infty}(\Omega)} \leq\left\|u_{0}\right\|_{L^{\infty}(\Omega)}
$$

- If $d_{1}=d_{2}=d: \partial_{t}(u+v)-d \Delta(u+v)=0$

$$
\begin{gathered}
\Rightarrow\|u(t)+v(t)\|_{L^{\infty}(\Omega)} \leq\left\|u_{0}+v_{0}\right\|_{L^{\infty}(\Omega)} \\
\Rightarrow T^{*}=+\infty .
\end{gathered}
$$

Back to the model example: what about L^{∞}-estimates?

$$
(S)\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=-u v^{\beta} \text { on } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=u v^{\beta} \text { on } Q_{T} \\
\partial_{\nu} u=\partial_{\nu} v=0 \text { on } \Sigma_{T} \\
u(0)=u_{0} \geq 0, \quad v(0)=v_{0} \geq 0
\end{array}\right.
$$

By maximum principle

$$
\partial_{t} u-d_{1} \Delta u \leq 0 \Rightarrow\|u(t)\|_{L^{\infty}(\Omega)} \leq\left\|u_{0}\right\|_{L^{\infty}(\Omega)}
$$

- If $d_{1}=d_{2}=d: \partial_{t}(u+v)-d \Delta(u+v)=0$

$$
\begin{gathered}
\Rightarrow\|u(t)+v(t)\|_{L^{\infty}(\Omega)} \leq\left\|u_{0}+v_{0}\right\|_{L^{\infty}(\Omega)} \\
\Rightarrow T^{*}=+\infty .
\end{gathered}
$$

- What happens when $d_{1} \neq d_{2}$?

A general L^{p}-approach

$$
(S)\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=-u v^{\beta} \text { on } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=u v^{\beta} \text { on } Q_{T} \\
\partial_{\nu} u=\partial_{\nu} v=0 \text { on } \Sigma_{T}, \\
u(0)=u_{0} \geq 0, v(0)=v_{0} \geq 0 .
\end{array}\right.
$$

$$
\partial_{t} v-d_{2} \Delta v=-\left[\partial_{t} u-d_{1} \Delta u\right], u \in L^{\infty}\left(Q_{T^{*}}\right)
$$

FORMALLY : $v=-\left[\partial_{t}-d_{2} \Delta\right]^{-1}\left(\partial_{t}-d_{1} \Delta\right) u(=\mathcal{A} u)$.

A general L^{p}－approach

$$
(S)\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=-u v^{\beta} \text { on } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=u v^{\beta} \text { on } Q_{T} \\
\partial_{\nu} u=\partial_{\nu} v=0 \text { on } \Sigma_{T}, \\
u(0)=u_{0} \geq 0, v(0)=v_{0} \geq 0 .
\end{array}\right.
$$

$$
\partial_{t} v-d_{2} \Delta v=-\left[\partial_{t} u-d_{1} \Delta u\right], u \in L^{\infty}\left(Q_{T^{*}}\right) .
$$

FORMALLY ：$v=-\left[\partial_{t}-d_{2} \Delta\right]^{-1}\left(\partial_{t}-d_{1} \Delta\right) u(=\mathcal{A} u)$ ．
－Lemma：the operator \mathcal{A} is continuous from $L^{p}\left(Q_{T}\right)$ into $L^{p}\left(Q_{T}\right)$ for all $\left.p \in\right] 1, \infty[$ and all $T>0$ ．

$$
\Rightarrow \forall p<+\infty,\|v\|_{L^{p}\left(Q_{T^{*}}\right)}<+\infty
$$

A general L^{p}-approach

$$
\begin{aligned}
& \quad(S)\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=-u v^{\beta} \text { on } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=u v^{\beta} \text { on } Q_{T} \\
\partial_{\nu} u=\partial_{\nu} v=0 \text { on } \Sigma_{T}, \\
u(0)=u_{0} \geq 0, \quad v(0)=v_{0} \geq 0 .
\end{array}\right. \\
& \partial_{t} v-d_{2} \Delta v=-\left[\partial_{t} u-d_{1} \Delta u\right], u \in L^{\infty}\left(Q_{T^{*}}\right) .
\end{aligned}
$$

FORMALLY : $v=-\left[\partial_{t}-d_{2} \Delta\right]^{-1}\left(\partial_{t}-d_{1} \Delta\right) u(=\mathcal{A} u)$.

- Lemma: the operator \mathcal{A} is continuous from $L^{p}\left(Q_{T}\right)$ into $L^{p}\left(Q_{T}\right)$ for all $\left.p \in\right] 1, \infty[$ and all $T>0$.

$$
\Rightarrow \forall p<+\infty,\|v\|_{L^{p}\left(Q_{T^{*}}\right)}<+\infty
$$

- Next

$$
\|v\|_{L^{\infty}\left(Q_{T^{*}}\right)} \leq C\left\|u v^{\beta}\right\|_{L^{q}\left(Q_{T^{*}}\right)} \text { if } q>(N+1) / 2
$$

A general L^{p}-approach

$$
\begin{aligned}
& \quad(S)\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=-u v^{\beta} \text { on } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=u v^{\beta} \text { on } Q_{T} \\
\partial_{\nu} u=\partial_{\nu} v=0 \text { on } \Sigma_{T}, \\
u(0)=u_{0} \geq 0, \quad v(0)=v_{0} \geq 0 .
\end{array}\right. \\
& \partial_{t} v-d_{2} \Delta v=-\left[\partial_{t} u-d_{1} \Delta u\right], u \in L^{\infty}\left(Q_{T^{*}}\right) .
\end{aligned}
$$

FORMALLY : $v=-\left[\partial_{t}-d_{2} \Delta\right]^{-1}\left(\partial_{t}-d_{1} \Delta\right) u(=\mathcal{A} u)$.

- Lemma: the operator \mathcal{A} is continuous from $L^{p}\left(Q_{T}\right)$ into $L^{p}\left(Q_{T}\right)$ for all $\left.p \in\right] 1, \infty[$ and all $T>0$.

$$
\Rightarrow \forall p<+\infty,\|v\|_{L^{p}\left(Q_{T^{*}}\right)}<+\infty
$$

- Next

$$
\|v\|_{L^{\infty}\left(Q_{T^{*}}\right)} \leq C\left\|u v^{\beta}\right\|_{L^{q}\left(Q_{T^{*}}\right)} \text { if } q>(N+1) / 2
$$

- Therefore

$$
\|v\|_{L^{\infty}\left(Q_{T^{*}}\right)}<+\infty \text { and } T^{*}=+\infty .
$$

The proof of the L^{p}-estimate by duality

$$
\partial_{t} v-d_{2} \Delta v \leq-\left[\partial_{t} u-d_{1} \Delta u\right], \quad v \geq 0,
$$

implies the existence of $C=C\left(p, T, \Omega, u_{0}, v_{0}\right)$ such that:

$$
\forall p \in(1, \infty),\|v\|_{L^{p}\left(Q_{T}\right)} \leq C\left[1+\|u\|_{L^{p}\left(Q_{T}\right)}\right] .
$$

The proof of the L^{p}－estimate by duality

$$
\partial_{t} v-d_{2} \Delta v \leq-\left[\partial_{t} u-d_{1} \Delta u\right], \quad v \geq 0,
$$

implies the existence of $C=C\left(p, T, \Omega, u_{0}, v_{0}\right)$ such that：

$$
\forall p \in(1, \infty),\|v\|_{L^{p}\left(Q_{T}\right)} \leq C\left[1+\|u\|_{L^{p}\left(Q_{T}\right)}\right] .
$$

－Solve the dual problem

$$
\left\{\begin{array}{l}
-\left(\partial_{t} \psi+d_{2} \Delta \psi\right)=\Theta \in C_{0}^{\infty}\left(Q_{T}\right), \Theta \geq 0, \\
\psi(T)=0, \quad \partial_{\nu} \psi=0 \text { on } \Sigma_{T} .
\end{array}\right.
$$

The proof of the L^{p}－estimate by duality

$$
\partial_{t} v-d_{2} \Delta v \leq-\left[\partial_{t} u-d_{1} \Delta u\right], \quad v \geq 0,
$$

implies the existence of $C=C\left(p, T, \Omega, u_{0}, v_{0}\right)$ such that：

$$
\forall p \in(1, \infty),\|v\|_{L^{p}\left(Q_{T}\right)} \leq C\left[1+\|u\|_{L^{p}\left(Q_{T}\right)}\right] .
$$

－Solve the dual problem

$$
\left\{\begin{array}{l}
-\left(\partial_{t} \psi+d_{2} \Delta \psi\right)=\Theta \in C_{0}^{\infty}\left(Q_{T}\right), \Theta \geq 0, \\
\psi(T)=0, \quad \partial_{\nu} \psi=0 \text { on } \Sigma_{T} .
\end{array}\right.
$$

－Multiplying the inequality in v by $\psi \geq 0$ leads to：

$$
\int_{Q_{T}} v \Theta \leq \int_{\Omega}\left(u_{0}+v_{0}\right) \psi(0)-\int_{Q_{T}} u \Theta+\left(d_{1}-d_{2}\right) \int_{Q_{T}} u \Delta \psi .
$$

The proof of the L^{p}-estimate by duality

$$
\partial_{t} v-d_{2} \Delta v \leq-\left[\partial_{t} u-d_{1} \Delta u\right], \quad v \geq 0,
$$

implies the existence of $C=C\left(p, T, \Omega, u_{0}, v_{0}\right)$ such that:

$$
\forall p \in(1, \infty),\|v\|_{L^{p}\left(Q_{T}\right)} \leq C\left[1+\|u\|_{L^{p}\left(Q_{T}\right)}\right] .
$$

- Solve the dual problem

$$
\left\{\begin{array}{l}
-\left(\partial_{t} \psi+d_{2} \Delta \psi\right)=\Theta \in C_{0}^{\infty}\left(Q_{T}\right), \Theta \geq 0, \\
\psi(T)=0, \quad \partial_{\nu} \psi=0 \text { on } \Sigma_{T} .
\end{array}\right.
$$

- Multiplying the inequality in v by $\psi \geq 0$ leads to:

$$
\int_{Q_{T}} v \Theta \leq \int_{\Omega}\left(u_{0}+v_{0}\right) \psi(0)-\int_{Q_{T}} u \Theta+\left(d_{1}-d_{2}\right) \int_{Q_{T}} u \Delta \psi .
$$

- By the $L^{p^{\prime}}$-maximal regularity theory

$$
\|\Delta \psi\|_{L^{\prime}\left(Q_{T}\right)}+\|\psi(0)\|_{L^{p^{\prime}}(\Omega)} \leq C\|\Theta\|_{L^{p^{\prime}}\left(Q_{T}\right)} .
$$

The proof of the L^{p}-estimate by duality

$$
\partial_{t} v-d_{2} \Delta v \leq-\left[\partial_{t} u-d_{1} \Delta u\right], \quad v \geq 0,
$$

implies the existence of $C=C\left(p, T, \Omega, u_{0}, v_{0}\right)$ such that:

$$
\forall p \in(1, \infty),\|v\|_{L^{p}\left(Q_{T}\right)} \leq C\left[1+\|u\|_{L^{p}\left(Q_{T}\right)}\right]
$$

- Solve the dual problem

$$
\left\{\begin{array}{l}
-\left(\partial_{t} \psi+d_{2} \Delta \psi\right)=\Theta \in C_{0}^{\infty}\left(Q_{T}\right), \Theta \geq 0, \\
\psi(T)=0, \quad \partial_{\nu} \psi=0 \text { on } \Sigma_{T} .
\end{array}\right.
$$

- Multiplying the inequality in v by $\psi \geq 0$ leads to:

$$
\int_{Q_{T}} v \Theta \leq \int_{\Omega}\left(u_{0}+v_{0}\right) \psi(0)-\int_{Q_{T}} u \Theta+\left(d_{1}-d_{2}\right) \int_{Q_{T}} u \Delta \psi .
$$

- By the $L^{p^{\prime}}$-maximal regularity theory

$$
\|\Delta \psi\|_{L^{\prime}\left(Q_{T}\right)}+\|\psi(0)\|_{L^{p^{\prime}}(\Omega)} \leq C\|\Theta\|_{L^{p^{\prime}}\left(Q_{T}\right)} .
$$

$\Rightarrow \Rightarrow\left|\int_{Q_{T}} v \Theta\right| \leq C\|\Theta\|_{L^{p^{\prime}}\left(Q_{T}\right)} \Rightarrow L^{p}\left(Q_{T}\right)$-estimate on v by duality.

Extensions and limits of the L^{p}－approach

－The same approach provides global existence
－for the＂Brusselator＂，for the epidemic models SIR
－for the 3×3 system

$$
U_{1}+U_{2} \stackrel{k^{+}}{\overrightarrow{k^{-}}} U_{3}:\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-k^{+} u_{1} u_{2}+k^{-} u_{3} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-k^{+} u_{1} u_{2}+k^{-} u_{3} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=k^{+} u_{1} u_{2}-k^{-} u_{3}
\end{array}\right.
$$

Extensions and limits of the L^{p}-approach

- The same approach provides global existence
- for the "Brusselator", for the epidemic models SIR
- for the 3×3 system

$$
U_{1}+U_{2} \stackrel{k^{+}}{\overrightarrow{k^{-}}} U_{3}:\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-k^{+} u_{1} u_{2}+k^{-} u_{3} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-k^{+} u_{1} u_{2}+k^{-} u_{3} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=k^{+} u_{1} u_{2}-k^{-} u_{3}
\end{array}\right.
$$

- More generally it applies to $m \times m$ systems if there exists a triangular invertible matrix Q with nonnegative entries such that

$$
\forall r \in[0, \infty)^{m}, Q f(r) \leq\left[1+\sum_{1 \leq i \leq m} r_{i}\right] \mathbf{b}
$$

for some $\mathbf{b} \in \boldsymbol{R}^{m}, f=\left(f_{1}, \ldots, f_{m}\right)^{t}$ with at most polynomial growth.

Extensions and limits of the L^{p}-approach

- The same approach provides global existence
- for the "Brusselator", for the epidemic models SIR
- for the 3×3 system

$$
U_{1}+U_{2} \stackrel{k^{+}}{\overrightarrow{k^{-}}} U_{3}:\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-k^{+} u_{1} u_{2}+k^{-} u_{3} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-k^{+} u_{1} u_{2}+k^{-} u_{3} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=k^{+} u_{1} u_{2}-k^{-} u_{3}
\end{array}\right.
$$

- More generally it applies to $m \times m$ systems if there exists a triangular invertible matrix Q with nonnegative entries such that

$$
\forall r \in[0, \infty)^{m}, Q f(r) \leq\left[1+\sum_{1 \leq i \leq m} r_{i}\right] \mathbf{b}
$$

for some $\mathbf{b} \in \boldsymbol{R}^{m}, f=\left(f_{1}, \ldots, f_{m}\right)^{t}$ with at most polynomial growth.

- Can be used for general systems with only (P)+(M) when the d_{i} are close to each other.

Extensions and limits of the L^{p}-approach

- All the previous results extends to Dirichlet or Robin type boundary conditions, assuming they are all of the same type in all equations or when they "combine well enough"

Extensions and limits of the L^{p}-approach

- All the previous results extends to Dirichlet or Robin type boundary conditions, assuming they are all of the same type in all equations or when they "combine well enough"
- Blow up in finite time may occur near the boundary in the system [Bebernes-Lacey]

$$
\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=-u v^{\beta} \text { in } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=u v^{\beta} \text { in } Q_{T} \\
u=1, \partial_{\nu} v=0 \text { on } \Sigma_{T} .
\end{array}\right.
$$

Extensions and limits of the L^{p}-approach

- All the previous results extends to Dirichlet or Robin type boundary conditions, assuming they are all of the same type in all equations or when they "combine well enough"
- Blow up in finite time may occur near the boundary in the system [Bebernes-Lacey]

$$
\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=-u v^{\beta} \text { in } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=u v^{\beta} \text { in } Q_{T} \\
u=1, \partial_{\nu} v=0 \text { on } \Sigma_{T} .
\end{array}\right.
$$

- Extends to Wentzell type boundary conditions, like

$$
\left\{\begin{array}{l}
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}(u) \text { in } Q_{T} \\
\sigma \partial_{t} u_{i}+d_{i} \partial_{\nu} u_{i}-\delta_{i} \Delta_{\partial \Omega} u_{i}=g_{i}(u) \text { on } \Sigma_{T}
\end{array}\right.
$$

with $\sigma, \delta_{i} \geq 0$ and " good g_{i} 's. [G. Goldstein, J. Goldstein, M. Meyries, M.P.]

Extensions and limits of the L^{p}-approach

- L^{p}-approach is not enough for global existence in

$$
\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=-u h(v) \text { in } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=u h(v) \text { in } Q_{T}
\end{array}\right.
$$

when $h(v)$ grows faster than a polynomial.

Extensions and limits of the L^{p}-approach

- L^{p}-approach is not enough for global existence in

$$
\left\{\begin{aligned}
\partial_{t} u-d_{1} \Delta u & =-u h(v) \text { in } Q_{T} \\
\partial_{t} v-d_{2} \Delta v & =u h(v) \text { in } Q_{T}
\end{aligned}\right.
$$

when $h(v)$ grows faster than a polynomial.

- The case $h(v)=e^{v}$ can be reached for this particular system by using Orlicz spaces, rather than L^{p}. There is also a different method based on the use of a specific Lyapunov function which works with systems with more specific stucture \{K. Masuda, J.I. Kanel, A. Haraux, A. Youkana, A. Barabanova, M. Kirane, S. Kouachi, S. Benachour, B. Rebiai,...\}

Extensions and limits of the L^{p}-approach

- L^{p}-approach is not enough for global existence in

$$
\left\{\begin{aligned}
\partial_{t} u-d_{1} \Delta u & =-u h(v) \text { in } Q_{T} \\
\partial_{t} v-d_{2} \Delta v & =u h(v) \text { in } Q_{T}
\end{aligned}\right.
$$

when $h(v)$ grows faster than a polynomial.

- The case $h(v)=e^{v}$ can be reached for this particular system by using Orlicz spaces, rather than L^{p}. There is also a different method based on the use of a specific Lyapunov
function which works with systems with more specific stucture \{K. Masuda, J.I. Kanel, A. Haraux, A. Youkana, A.
Barabanova, M. Kirane, S. Kouachi, S. Benachour, B. Rebiai,...\}
- Still the system

$$
\left\{\begin{aligned}
\partial_{t} u-d_{1} \Delta u & =-u e^{v^{2}} \text { in } Q_{T} \\
\partial_{t} v-d_{2} \Delta v & =u e^{v^{2}} \text { in } Q_{T}
\end{aligned}\right.
$$

remains open.

Extensions and limits of the L^{p}-approach

- L^{p}-approach does not apply to

$$
\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=u^{3} v^{2}-u^{2} v^{3} \text { in } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=u^{2} v^{3}-u^{3} v^{2} \text { in } Q_{T}
\end{array}\right.
$$

Extensions and limits of the L^{p}－approach

－L^{p}－approach does not apply to

$$
\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=u^{3} v^{2}-u^{2} v^{3} \text { in } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=u^{2} v^{3}-u^{3} v^{2} \text { in } Q_{T}
\end{array}\right.
$$

－and even not to the＂better＂system with $\lambda \in[0,1[$

$$
\left\{\begin{array}{c}
\partial_{t} u-d_{1} \Delta u=\lambda u^{3} v^{2}-u^{2} v^{3} \text { in } Q_{T}, \\
\partial_{t} v-d_{2} \Delta v=u^{2} v^{3}-u^{3} v^{2} \text { in } Q_{T}
\end{array}\right.
$$

where $f(u, v)+g(u, v) \leq 0$ and also $f(u, v)+\lambda g(u, v) \leq 0$

Finite time L^{∞}-blow up may appear!

$$
\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=f(u, v) \text { in } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=g(u, v) \text { in } Q_{T}
\end{array}\right.
$$

Theorem: (D. Schmitt, MP) One can find polynomial nonlinearities f, g satisfying (\mathbf{P}) and

$$
\text { (M) } f+g \leq 0, \text { and also : } \exists \lambda \in[0,1[, f+\lambda g \leq 0,
$$

and for which there exists $T^{*}<+\infty$ with

$$
\lim _{t \rightarrow T^{*}}\|u(t)\|_{L^{\infty}(\Omega)}=+\infty=\lim _{t \rightarrow T^{*}}\|v(t)\|_{L^{\infty}(\Omega)}
$$

Finite time L^{∞}-blow up may appear!

$$
\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=f(u, v) \text { in } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=g(u, v) \text { in } Q_{T}
\end{array}\right.
$$

Theorem: (D. Schmitt, MP) One can find polynomial nonlinearities f, g satisfying (\mathbf{P}) and

$$
\text { (M) } f+g \leq 0, \text { and also : } \exists \lambda \in[0,1[, f+\lambda g \leq 0,
$$

and for which there exists $T^{*}<+\infty$ with

$$
\lim _{t \rightarrow T^{*}}\|u(t)\|_{L^{\infty}(\Omega)}=+\infty=\lim _{t \rightarrow T^{*}}\|v(t)\|_{L^{\infty}(\Omega)}
$$

- The blow up is similar to $u(t, x)=\frac{1}{\left(T^{*}-t\right)^{2}+|x|^{2}}$ which is solution of $\partial_{t} u-\Delta u=g(t, x) u^{2}$ with $g \in L^{\infty}, N \geq 4$. The solution goes out of $L^{\infty}(\Omega)$ at $t=T^{*}$, but still exists for $t>T^{*} .--->$ Incomplete blow up!

Idea of the proof of the＂possible blow up＂Theorem

－Look for solutions of the form

$$
u(t, x)=\frac{a\left(T^{*}-t\right)+b|x|^{2}}{\left[T^{*}-t+|x|^{2}\right]^{\gamma}}, \quad v(t, x)=\frac{c\left(T^{*}-t\right)+d|x|^{2}}{\left[T^{*}-t+|x|^{2}\right]^{\gamma}},
$$

Find $a, b, c, d, d_{1}, d_{2}>0, \gamma>1, N \geq 1$ so that u, v be solutions of a $\mathbf{(P) + (M) ~ s y s t e m . ~}$

Idea of the proof of the "possible blow up" Theorem

- Look for solutions of the form

$$
u(t, x)=\frac{a\left(T^{*}-t\right)+b|x|^{2}}{\left[T^{*}-t+|x|^{2}\right]^{\gamma}}, \quad v(t, x)=\frac{c\left(T^{*}-t\right)+d|x|^{2}}{\left[T^{*}-t+|x|^{2}\right]^{\gamma}},
$$

Find $a, b, c, d, d_{1}, d_{2}>0, \gamma>1, N \geq 1$ so that u, v be solutions of a (P) $+(\mathbf{M})$ system.

- There are examples even in dimension $N=1$.

Idea of the proof of the "possible blow up" Theorem

- Look for solutions of the form

$$
u(t, x)=\frac{a\left(T^{*}-t\right)+b|x|^{2}}{\left[T^{*}-t+|x|^{2}\right]^{\gamma}}, \quad v(t, x)=\frac{c\left(T^{*}-t\right)+d|x|^{2}}{\left[T^{*}-t+|x|^{2}\right]^{\gamma}},
$$

Find $a, b, c, d, d_{1}, d_{2}>0, \gamma>1, N \geq 1$ so that u, v be solutions of a (P)+(M) system.

- There are examples even in dimension $N=1$.
- By choosing N large enough, we can obtain blow up with nonlinearities $f(u, v), g(u, v)$ with growth $2+\epsilon, \epsilon>0$ as small as we want.

CONCLUSION at this stage:

Look rather for weak solutions which are allowed to go out of $L^{\infty}(\Omega)$ from time to time or even often.

We ask the nonlinearities to be at least in $L^{1}\left(Q_{T}\right)$.

$$
f_{i}(u) \in L^{1}\left(Q_{T}\right) ?
$$

An L^{1}-approach

$$
(S) \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

- L^{1}-Theorem. Assume the two conditions (\mathbf{P})+(\mathbf{M}^{\prime}) hold. Assume moreover that the following a priori estimate holds:

$$
\forall i=1, \ldots, m, \int_{Q_{T}}\left|f_{i}(u)\right| \leq C
$$

Assume $u_{i}^{0} \in L^{1}(\Omega)$. Then, there exists a global weak solution for System (S).

An L^{1}-approach

$$
(S) \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

- L^{1}-Theorem. Assume the two conditions (\mathbf{P})+ (\mathbf{M}^{\prime}) hold. Assume moreover that the following a priori estimate holds:

$$
\forall i=1, \ldots, m, \int_{Q_{T}}\left|f_{i}(u)\right| \leq C
$$

Assume $u_{i}^{0} \in L^{1}(\Omega)$. Then, there exists a global weak solution for System (S).

- Proof: via supersolutions and truncations techniques !

Main ingredients in the proof of the L^{1}-theorem

- Truncating the $f_{i} \rightarrow f_{i}^{n}, u_{i}^{0} \rightarrow\left(u_{i}^{0}\right)^{n} \mapsto$ global approximate solutions u_{i}^{n} with $\left\|f_{i}^{n}\left(u^{n}\right)\right\|_{L^{1}\left(Q_{T}\right)}$ bounded independently of n

$$
(S)\left\{\begin{array}{l}
\partial_{t} u_{i}^{n}-d_{i} \Delta u_{i}^{n}=f_{i}^{n}\left(u_{1}^{n}, \ldots, u_{m}^{n}\right) \text { on }(0, \infty) \times \Omega, \\
\partial_{\nu} u_{i}^{n}=0 \text { on }(0, \infty) \times \partial \Omega, \\
u_{i}^{n}(0, \cdot)=u_{i}^{0} \geq 0,
\end{array}\right.
$$

Main ingredients in the proof of the L^{1}-theorem

- Truncating the $f_{i} \rightarrow f_{i}^{n}, u_{i}^{0} \rightarrow\left(u_{i}^{0}\right)^{n} \mapsto$ global approximate solutions u_{i}^{n} with $\left\|f_{i}^{n}\left(u^{n}\right)\right\|_{L^{1}\left(Q_{T}\right)}$ bounded independently of n

$$
(S)\left\{\begin{array}{l}
\partial_{t} u_{i}^{n}-d_{i} \Delta u_{i}^{n}=f_{i}^{n}\left(u_{1}^{n}, \ldots, u_{m}^{n}\right) \text { on }(0, \infty) \times \Omega, \\
\partial_{\nu} u_{i}^{n} 0 \text { on }(0, \infty) \times \partial \Omega, \\
u_{i}^{n}(0, \cdot)=u_{i}^{0} \geq 0,
\end{array}\right.
$$

- Compactness of the mapping $\left(g, w_{0}\right) \in L^{1}\left(Q_{T}\right) \times L^{1}(\Omega) \mapsto w \in L^{1}\left(Q_{T}\right)$ where

$$
\partial_{t} w-d \Delta w=g \text { on } Q_{T}, w(0, \cdot)=w_{0}, \partial_{\nu} w=0 \text { on } \partial \Omega .
$$

so that $u_{i}^{n} \rightarrow u_{i}$ in $L^{1}\left(Q_{T}\right)$ and a.e. as $n \rightarrow+\infty$

Main ingredients in the proof of the L^{1}-theorem

- Truncating the $f_{i} \rightarrow f_{i}^{n}, u_{i}^{0} \rightarrow\left(u_{i}^{0}\right)^{n} \mapsto$ global approximate solutions u_{i}^{n} with $\left\|f_{i}^{n}\left(u^{n}\right)\right\|_{L^{1}\left(Q_{T}\right)}$ bounded independently of n

$$
(S)\left\{\begin{array}{l}
\partial_{t} u_{i}^{n}-d_{i} \Delta u_{i}^{n}=f_{i}^{n}\left(u_{1}^{n}, \ldots, u_{m}^{n}\right) \text { on }(0, \infty) \times \Omega, \\
\partial_{\nu} u_{i}^{n}=0 \text { on }(0, \infty) \times \partial \Omega, \\
u_{i}^{n}(0, \cdot)=u_{i}^{0} \geq 0,
\end{array}\right.
$$

- Compactness of the mapping $\left(g, w_{0}\right) \in L^{1}\left(Q_{T}\right) \times L^{1}(\Omega) \mapsto w \in L^{1}\left(Q_{T}\right)$ where

$$
\partial_{t} w-d \Delta w=g \text { on } Q_{T}, w(0, \cdot)=w_{0}, \partial_{\nu} w=0 \text { on } \partial \Omega .
$$

so that $u_{i}^{n} \rightarrow u_{i}$ in $L^{1}\left(Q_{T}\right)$ and a.e. as $n \rightarrow+\infty$

- We first prove that the limit u_{i} is a supersolution.

Main ingredients in the proof of the L^{1}-theorem

- Truncating the $f_{i} \rightarrow f_{i}^{n}, u_{i}^{0} \rightarrow\left(u_{i}^{0}\right)^{n} \mapsto$ global approximate solutions u_{i}^{n} with $\left\|f_{i}^{n}\left(u^{n}\right)\right\|_{L^{1}\left(Q_{T}\right)}$ bounded independently of n

$$
(S)\left\{\begin{array}{l}
\partial_{t} u_{i}^{n}-d_{i} \Delta u_{i}^{n}=f_{i}^{n}\left(u_{1}^{n}, \ldots, u_{m}^{n}\right) \text { on }(0, \infty) \times \Omega, \\
\partial_{\nu} u_{i}^{n} 0 \text { on }(0, \infty) \times \partial \Omega, \\
u_{i}^{n}(0, \cdot)=u_{i}^{0} \geq 0,
\end{array}\right.
$$

- Compactness of the mapping $\left(g, w_{0}\right) \in L^{1}\left(Q_{T}\right) \times L^{1}(\Omega) \mapsto w \in L^{1}\left(Q_{T}\right)$ where

$$
\partial_{t} w-d \Delta w=g \text { on } Q_{T}, w(0, \cdot)=w_{0}, \partial_{\nu} w=0 \text { on } \partial \Omega .
$$

so that $u_{i}^{n} \rightarrow u_{i}$ in $L^{1}\left(Q_{T}\right)$ and a.e. as $n \rightarrow+\infty$

- We first prove that the limit u_{i} is a supersolution.
- For this, we use the equation satisfied by

$$
T_{k}\left(u_{i}^{n}+\eta \sum_{j \neq i} u_{j}^{n}\right) \text { where } T_{k}(r)=\min \{r, k\}, \eta>0
$$

Main ingredients in the proof of the L^{1}-theorem

$$
(S)\left\{\begin{array}{l}
\partial_{t} u_{i}^{n}-d_{i} \Delta u_{i}^{n}=f_{i}^{n}\left(u_{1}^{n}, \ldots, u_{m}^{n}\right) \text { on }(0, \infty) \times \Omega, \\
\partial_{\nu} u_{i}^{n}=0 \text { on }(0, \infty) \times \partial \Omega, \\
u_{i}^{n}(0, \cdot)=u_{i}^{0} \geq 0,
\end{array} \quad \sup _{i}\left\|f_{i}^{n}\left(u^{n}\right)\right\|_{L^{1}\left(Q_{T}\right)} \leq C(T) \text { for all } T>0 .(*)\right. \text {. }
$$

- If $m=1: \partial_{t} T_{k}\left(u_{1}^{n}\right)-d_{1} \Delta T_{k}\left(u_{1}^{n}\right) \geq T_{k}^{\prime}\left(u_{1}^{n}\right) f_{1}^{n}\left(u_{1}^{n}\right)$.

Main ingredients in the proof of the L^{1}-theorem

$$
\begin{aligned}
& (S)\left\{\begin{array}{l}
\partial_{t} u_{i}^{n}-d_{i} \Delta u_{i}^{n}=f_{i}^{n}\left(u_{1}^{n}, \ldots, u_{m}^{n}\right) \text { on }(0, \infty) \times \Omega, \\
\partial_{\nu} u_{i}^{n}=0 \text { on }(0, \infty) \times \partial \Omega, \\
u_{i}^{n}(0, \cdot)=u_{i}^{0} \geq 0,
\end{array}\right. \\
& \sup _{i}\left\|f_{i}^{n}\left(u^{n}\right)\right\|_{L^{1}\left(Q_{T}\right)} \leq C(T) \text { for all } T>0 .(*)
\end{aligned}
$$

- If $m=1: \partial_{t} T_{k}\left(u_{1}^{n}\right)-d_{1} \Delta T_{k}\left(u_{1}^{n}\right) \geq T_{k}^{\prime}\left(u_{1}^{n}\right) f_{1}^{n}\left(u_{1}^{n}\right)$.
$-n \rightarrow+\infty: \Rightarrow \partial_{t} T_{k}\left(u_{1}\right)-d_{1} \Delta T_{k}\left(u_{1}\right) \geq T_{k}^{\prime}\left(u_{1}\right) f_{1}\left(u_{1}\right)$.

Main ingredients in the proof of the L^{1}-theorem

$$
\begin{aligned}
& (S)\left\{\begin{array}{l}
\partial_{t} u_{i}^{n}-d_{i} \Delta u_{i}^{n}=f_{i}^{n}\left(u_{1}^{n}, \ldots, u_{m}^{n}\right) \text { on }(0, \infty) \times \Omega, \\
\partial_{\nu} u_{i}^{n}=0 \text { on }(0, \infty) \times \partial \Omega, \\
u_{i}^{n}(0, \cdot)=u_{i}^{0} \geq 0,
\end{array}\right. \\
& \sup _{i}\left\|f_{i}^{n}\left(u^{n}\right)\right\|_{L^{1}\left(Q_{T}\right)} \leq C(T) \text { for all } T>0 .(*)
\end{aligned}
$$

- If $m=1: \partial_{t} T_{k}\left(u_{1}^{n}\right)-d_{1} \Delta T_{k}\left(u_{1}^{n}\right) \geq T_{k}^{\prime}\left(u_{1}^{n}\right) f_{1}^{n}\left(u_{1}^{n}\right)$.
- $n \rightarrow+\infty: \Rightarrow \partial_{t} T_{k}\left(u_{1}\right)-d_{1} \Delta T_{k}\left(u_{1}\right) \geq T_{k}^{\prime}\left(u_{1}\right) f_{1}\left(u_{1}\right)$.
- $k \rightarrow \infty \Rightarrow u_{1}$ is a supersolution

Main ingredients in the proof of the L^{1}-theorem

$$
\begin{aligned}
& (S)\left\{\begin{array}{l}
\partial_{t} u_{i}^{n}-d_{i} \Delta u_{i}^{n}=f_{i}^{n}\left(u_{1}^{n}, \ldots, u_{m}^{n}\right) \text { on }(0, \infty) \times \Omega, \\
\partial_{\nu} u_{i}^{n} 0 \text { on }(0, \infty) \times \partial \Omega, \\
u_{i}^{n}(0, \cdot)=u_{i}^{0} \geq 0,
\end{array}\right. \\
& \sup _{i}\left\|f_{i}^{n}\left(u^{n}\right)\right\|_{L^{1}\left(Q_{T}\right)} \leq C(T) \text { for all } T>0 .(*)
\end{aligned}
$$

- If $m=1: \partial_{t} T_{k}\left(u_{1}^{n}\right)-d_{1} \Delta T_{k}\left(u_{1}^{n}\right) \geq T_{k}^{\prime}\left(u_{1}^{n}\right) f_{1}^{n}\left(u_{1}^{n}\right)$.
$-n \rightarrow+\infty: \Rightarrow \partial_{t} T_{k}\left(u_{1}\right)-d_{1} \Delta T_{k}\left(u_{1}\right) \geq T_{k}^{\prime}\left(u_{1}\right) f_{1}\left(u_{1}\right)$.
- $k \rightarrow \infty \Rightarrow u_{1}$ is a supersolution
- $m>1$: Let $w_{i}^{n}:=T_{k}\left(u_{i}^{n}+\eta \sum_{j \neq i} u_{j}^{n}\right)$,

$$
\partial_{t} w_{i}^{n}-d_{i} \Delta w_{i}^{n} \geq T_{k}^{\prime}\left(w_{i}^{n}\right) f_{i}\left(u_{1}^{n}, \ldots, u_{m}^{n}\right)+R_{i}^{n}(\eta, k)
$$

Main ingredients in the proof of the L^{1}-theorem

$$
\begin{aligned}
& (S)\left\{\begin{array}{l}
\partial_{t} u_{i}^{n}-d_{i} \Delta u_{i}^{n}=f_{i}^{n}\left(u_{1}^{n}, \ldots, u_{m}^{n}\right) \text { on }(0, \infty) \times \Omega, \\
\partial_{\nu} u_{i}^{n}=0 \text { on }(0, \infty) \times \partial \Omega, \\
u_{i}^{n}(0, \cdot)=u_{i}^{0} \geq 0,
\end{array}\right. \\
& \sup _{i}\left\|f_{i}^{n}\left(u^{n}\right)\right\|_{L^{1}\left(Q_{T}\right)} \leq C(T) \text { for all } T>0 .(*)
\end{aligned}
$$

- If $m=1: \partial_{t} T_{k}\left(u_{1}^{n}\right)-d_{1} \Delta T_{k}\left(u_{1}^{n}\right) \geq T_{k}^{\prime}\left(u_{1}^{n}\right) f_{1}^{n}\left(u_{1}^{n}\right)$.
- $n \rightarrow+\infty: \Rightarrow \partial_{t} T_{k}\left(u_{1}\right)-d_{1} \Delta T_{k}\left(u_{1}\right) \geq T_{k}^{\prime}\left(u_{1}\right) f_{1}\left(u_{1}\right)$.
- $k \rightarrow \infty \Rightarrow u_{1}$ is a supersolution
- $m>1$: Let $w_{i}^{n}:=T_{k}\left(u_{i}^{n}+\eta \sum_{j \neq i} u_{j}^{n}\right)$,

$$
\partial_{t} w_{i}^{n}-d_{i} \Delta w_{i}^{n} \geq T_{k}^{\prime}\left(w_{i}^{n}\right) f_{i}\left(u_{1}^{n}, \ldots, u_{m}^{n}\right)+R_{i}^{n}(\eta, k) .
$$

- The limit u_{i} is a supersolution by letting successively: $n \rightarrow \infty, \eta \rightarrow 0, k \rightarrow+\infty$.

Main ingredients in the proof of the L^{1}-theorem

$$
\begin{aligned}
& (S)\left\{\begin{array}{l}
\partial_{t} u_{i}^{n}-d_{i} \Delta u_{i}^{n}=f_{i}^{n}\left(u_{1}^{n}, \ldots, u_{m}^{n}\right) \text { on }(0, \infty) \times \Omega, \\
\partial_{\nu} u_{i}^{n}=0 \text { on }(0, \infty) \times \partial \Omega, \\
u_{i}^{n}(0, \cdot)=u_{i}^{0} \geq 0,
\end{array}\right. \\
& \sup _{i}\left\|f_{i}^{n}\left(u^{n}\right)\right\|_{L^{1}\left(Q_{T}\right)} \leq C(T) \text { for all } T>0 .(*)
\end{aligned}
$$

- If $m=1: \partial_{t} T_{k}\left(u_{1}^{n}\right)-d_{1} \Delta T_{k}\left(u_{1}^{n}\right) \geq T_{k}^{\prime}\left(u_{1}^{n}\right) f_{1}^{n}\left(u_{1}^{n}\right)$.
- $n \rightarrow+\infty: \Rightarrow \partial_{t} T_{k}\left(u_{1}\right)-d_{1} \Delta T_{k}\left(u_{1}\right) \geq T_{k}^{\prime}\left(u_{1}\right) f_{1}\left(u_{1}\right)$.
- $k \rightarrow \infty \Rightarrow u_{1}$ is a supersolution
- $m>1$: Let $w_{i}^{n}:=T_{k}\left(u_{i}^{n}+\eta \sum_{j \neq i} u_{j}^{n}\right)$,

$$
\partial_{t} w_{i}^{n}-d_{i} \Delta w_{i}^{n} \geq T_{k}^{\prime}\left(w_{i}^{n}\right) f_{i}\left(u_{1}^{n}, \ldots, u_{m}^{n}\right)+R_{i}^{n}(\eta, k) .
$$

- The limit u_{i} is a supersolution by letting successively:

$$
n \rightarrow \infty, \eta \rightarrow 0, k \rightarrow+\infty .
$$

- Main estimate for $\eta \rightarrow 0: \int_{\left[u_{i}^{n} \leq k\right]}\left|\nabla u_{i}^{n}\right|^{2} \leq C k$

End of the proof of the L^{1}-theorem

- Since u_{i} is a supersolution, we have

$$
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}(u)+\mu_{i}, \quad 0 \leq \mu_{i}(=\text { nonnegative measure }) .
$$

End of the proof of the L^{1}－theorem

－Since u_{i} is a supersolution，we have

$$
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}(u)+\mu_{i}, \quad 0 \leq \mu_{i}(=\text { nonnegative measure }) .
$$

－By（M）：

$$
\partial_{t}\left(\sum_{i} u_{i}^{n}\right)-\Delta\left(\sum_{i} d_{i} u_{i}^{n}\right)=\sum_{i} f_{i}^{n}\left(u^{n}\right) \leq 0
$$

End of the proof of the L^{1}-theorem

- Since u_{i} is a supersolution, we have

$$
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}(u)+\mu_{i}, \quad 0 \leq \mu_{i}(=\text { nonnegative measure }) .
$$

- By (M):

$$
\partial_{t}\left(\sum_{i} u_{i}^{n}\right)-\Delta\left(\sum_{i} d_{i} u_{i}^{n}\right)=\sum_{i} f_{i}^{n}\left(u^{n}\right) \leq 0,
$$

- By Fatou's lemma

$$
\partial_{t}\left(\sum_{i} u_{i}\right)-\Delta\left(\sum_{i} d_{i} u_{i}\right) \leq \sum_{i} f_{i}(u),
$$

End of the proof of the L^{1}-theorem

- Since u_{i} is a supersolution, we have

$$
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}(u)+\mu_{i}, \quad 0 \leq \mu_{i}(=\text { nonnegative measure }) .
$$

- By (M):

$$
\partial_{t}\left(\sum_{i} u_{i}^{n}\right)-\Delta\left(\sum_{i} d_{i} u_{i}^{n}\right)=\sum_{i} f_{i}^{n}\left(u^{n}\right) \leq 0
$$

- By Fatou's lemma

$$
\begin{aligned}
& \partial_{t}\left(\sum_{i} u_{i}\right)-\Delta\left(\sum_{i} d_{i} u_{i}\right) \leq \sum_{i} f_{i}(u), \\
& \sum_{i}\left[f_{i}(u)+\mu_{i}\right] \leq \sum_{i} f_{i}(u) \Rightarrow \mu_{i} \equiv 0 \forall i .
\end{aligned}
$$

L^{1}-Theorem applies to many situations

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=-u e^{v^{2}} \text { in } Q_{T} \\
\partial_{t} v-d_{2} \Delta v=u e^{v^{2}} \text { in } Q_{T}
\end{array}\right. \\
& \int_{\Omega} u(T)+\int_{Q_{T}} u e^{v^{2}}=\int_{\Omega} u_{0},
\end{aligned}
$$

whence the $L^{1}\left(Q_{T}\right)$-estimate of the nonlinearity.

L^{1}-Theorem applies to many situations

$$
\left\{\begin{array}{c}
\partial_{t} u-d_{1} \Delta u=\lambda u^{3} v^{2}-u^{2} v^{3} \text { in } Q_{T}, \\
\partial_{t} v-d_{2} \Delta v=u^{2} v^{3}-u^{3} v^{2} \text { in } Q_{T}
\end{array}\right.
$$

L^{1}-Theorem applies to many situations

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=\lambda u^{3} v^{2}-u^{2} v^{3} \text { in } Q_{T}, \\
\partial_{t} v-d_{2} \Delta v=u^{2} v^{3}-u^{3} v^{2} \text { in } Q_{T}
\end{array}\right. \\
& \int_{\Omega} u(T)+\int_{Q_{T}} u^{2} v^{3}=\lambda \int_{Q_{T}} u^{3} v^{2}+\int_{\Omega} u_{0} .
\end{aligned}
$$

L^{1}-Theorem applies to many situations

$$
\begin{aligned}
& \left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=\lambda u^{3} v^{2}-u^{2} v^{3} \text { in } Q_{T}, \\
\partial_{t} v-d_{2} \Delta v=u^{2} v^{3}-u^{3} v^{2} \text { in } Q_{T}
\end{array}\right. \\
& \int_{\Omega} u(T)+\int_{Q_{T}} u^{2} v^{3}=\lambda \int_{Q_{T}} u^{3} v^{2}+\int_{\Omega} u_{0} . \\
& \quad \int_{\Omega} v(T)+\int_{Q_{T}} u^{3} v^{2}=\int_{Q_{T}} u^{2} v^{3}+\int_{\Omega} v_{0} u^{3} v^{2} \leq \lambda \int_{Q_{T}} u^{3} v^{2}+\int_{\Omega} u_{0}+v_{0}
\end{aligned}
$$

L^{1}-Theorem applies to many situations

$$
\left\{\begin{array}{l}
\partial_{t} u-d_{1} \Delta u=\lambda u^{3} v^{2}-u^{2} v^{3} \text { in } Q_{T}, \\
\partial_{t} v-d_{2} \Delta v=u^{2} v^{3}-u^{3} v^{2} \text { in } Q_{T}
\end{array}\right.
$$

$$
\int_{\Omega} u(T)+\int_{Q_{T}} u^{2} v^{3}=\lambda \int_{Q_{T}} u^{3} v^{2}+\int_{\Omega} u_{0}
$$

$$
\int_{\Omega} v(T)+\int_{Q_{T}} u^{3} v^{2}=\int_{Q_{T}} u^{2} v^{3}+\int_{\Omega} v_{0}
$$

$$
\Rightarrow \int_{Q_{T}} u^{3} v^{2} \leq \lambda \int_{Q_{T}} u^{3} v^{2}+\int_{\Omega} u_{0}+v_{0}
$$

$$
\text { For } \lambda<1: \Rightarrow \int_{Q_{T}} u^{3} v^{2}<+\infty, \int_{Q_{T}} u^{2} v^{3}<+\infty
$$

L^{1}-Theorem applies to many situations

$$
\left\{\begin{aligned}
\partial_{t} u-d_{1} \Delta u & =\lambda u^{3} v^{2}-u^{2} v^{3} \text { in } Q_{T} \\
\partial_{t} v-d_{2} \Delta v & =u^{2} v^{3}-u^{3} v^{2} \text { in } Q_{T}
\end{aligned}\right.
$$

$$
\int_{\Omega} u(T)+\int_{Q_{T}} u^{2} v^{3}=\lambda \int_{Q_{T}} u^{3} v^{2}+\int_{\Omega} u_{0}
$$

$$
\int_{\Omega} v(T)+\int_{Q_{T}} u^{3} v^{2}=\int_{Q_{T}} u^{2} v^{3}+\int_{\Omega} v_{0}
$$

$$
\Rightarrow \int_{Q_{T}} u^{3} v^{2} \leq \lambda \int_{Q_{T}} u^{3} v^{2}+\int_{\Omega} u_{0}+v_{0}
$$

$$
\text { For } \lambda<1: \Rightarrow \int_{Q_{T}} u^{3} v^{2}<+\infty, \int_{Q_{T}} u^{2} v^{3}<+\infty
$$

- Open problem if $\lambda=1$: L^{1}-estimate of the nonlinearity??

L^{1}-Theorem applies to many situations

- More generally it applies if there exists an invertible matrix Q with nonnegative entries such that

$$
\forall r \in[0, \infty)^{m}, Q f(r) \leq\left[1+\sum_{1 \leq i \leq m} r_{i}\right] \mathbf{b},
$$

for some $\mathbf{b} \in \boldsymbol{R}^{m}, f=\left(f_{1}, \ldots, f_{m}\right)^{t}$.
(In other words, there are m linearly independent inequalities for the f_{i} 's and not only one).

L^{1}-Theorem applies to many situations

- More generally it applies if there exists an invertible matrix Q with nonnegative entries such that

$$
\forall r \in[0, \infty)^{m}, Q f(r) \leq\left[1+\sum_{1 \leq i \leq m} r_{i}\right] \mathbf{b},
$$

for some $\mathbf{b} \in \boldsymbol{R}^{m}, f=\left(f_{1}, \ldots, f_{m}\right)^{t}$.
(In other words, there are m linearly independent inequalities for the f_{i} 's and not only one).

- Extends partially to electro-diffusion-reaction systems.

A surprising a priori L^{2}-estimate for these systems

$$
\text { (S) } \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

L^{2}-Theorem. Assume ($\mathbf{P} \mathbf{)}+\left(\mathbf{M}^{\prime}\right)$. Then, the following a priori estimate holds for the solutions of (S) :

$$
\forall i=1, \ldots, m, \forall T>0, \quad \int_{Q_{T}} u_{i}^{2} \leq C\left[1+\sum_{i} \int_{\Omega}\left(u_{i}^{0}\right)^{2}\right] .
$$

A surprising a priori L^{2}-estimate for these systems

$$
\text { (S) } \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

L^{2}-Theorem. Assume ($\mathbf{P} \mathbf{)}+\left(\mathbf{M}^{\prime}\right)$. Then, the following a priori estimate holds for the solutions of (S) :

$$
\forall i=1, \ldots, m, \forall T>0, \quad \int_{Q_{T}} u_{i}^{2} \leq C\left[1+\sum_{i} \int_{\Omega}\left(u_{i}^{0}\right)^{2}\right] .
$$

- Corollary of the L^{1} - and L^{2}-Theorems: Assume (\mathbf{P}),(\mathbf{M}^{\prime}) and f_{i} is at most quadratic. Then, System (S) has a global weak solution.

A surprising a priori L^{2}-estimate for these systems

$$
\text { (S) } \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

L^{2}-Theorem. Assume ($\mathbf{P} \mathbf{)}+\left(\mathbf{M}^{\prime}\right)$. Then, the following a priori estimate holds for the solutions of (S) :

$$
\forall i=1, \ldots, m, \forall T>0, \quad \int_{Q_{T}} u_{i}^{2} \leq C\left[1+\sum_{i} \int_{\Omega}\left(u_{i}^{0}\right)^{2}\right] .
$$

- Corollary of the L^{1} - and L^{2}-Theorems: Assume (\mathbf{P}),(\mathbf{M}^{\prime}) and f_{i} is at most quadratic. Then, System (S) has a global weak solution.
- Recall that nonlinearities are quadratic in many examples.

Application to the quadratic chemical reaction:

$$
\begin{gathered}
U_{1}+U_{2} \stackrel{k^{+}}{\stackrel{k^{+}}{k^{-}}} U_{3}+U_{4} \\
\left\{\begin{array}{cc}
\partial_{t} u_{1}-d_{1} \Delta u_{1}= & -k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2} & =-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3} & =k^{+} u_{1} u_{2}-k^{-} u_{3} u_{4} \\
\partial_{t} u_{4}-d_{4} \Delta u_{4}= & k^{+} u_{1} u_{2}-k^{-} u_{3} u_{4}
\end{array}\right.
\end{gathered}
$$

Application to the quadratic chemical reaction：

$$
\begin{gathered}
U_{1}+U_{2} \frac{k^{+}}{\bar{k}} U_{3}+U_{4} \\
\left\{\begin{array}{l}
\partial_{2} u_{1}-d_{1} \Delta u_{1}=-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{2} u_{2}-d_{2} \Delta u_{2}=-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=k^{+}+u_{1} u_{2}-k^{-}-u_{3} u_{4} \\
\partial_{t} u_{4}-d_{4} \Delta u_{4}=k^{+} u_{1} u_{2}-k^{-} u_{3} u_{4}
\end{array}\right.
\end{gathered}
$$

－Global existence of a weak solution

Application to the quadratic chemical reaction:

$$
\begin{gathered}
U_{1}+U_{2} \stackrel{\frac{k^{+}}{k}}{\bar{k}} u_{3}+U_{4} \\
\left\{\begin{array}{l}
\partial_{2} u_{1}-d_{1} \Delta u_{1}=-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=k^{+}+u_{1} u_{2}-k^{-} u_{3} u_{4} \\
\partial_{t} u_{4}-d_{4} \Delta u_{4}=k^{+} u_{1} u_{2}-k^{-} u_{3} u_{4}
\end{array}\right.
\end{gathered}
$$

- Global existence of a weak solution
- The L^{p}-approach does not work

Application to the quadratic chemical reaction：

$$
\begin{gathered}
U_{1}+U_{2} \stackrel{\stackrel{k^{+}}{\stackrel{k}{k}} U_{3}+U_{4}}{ } \\
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=k^{+} u_{1} u_{2}-k^{-} u_{3} u_{4} \\
\partial_{t} u_{4}-d_{4} \Delta u_{4}=k^{+} u_{1} u_{2}-k^{-} u_{3} u_{4}
\end{array}\right.
\end{gathered}
$$

－Global existence of a weak solution
－The L^{p}－approach does not work
－This solution is regular（＝classical）in dimension $N=1,2$

Application to the quadratic chemical reaction:

$$
\begin{aligned}
& U_{1}+U_{2} \underset{k^{-}}{\stackrel{k^{+}}{+}} U_{3}+U_{4} \\
& \left\{\begin{array}{c}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=k^{+} u_{1} u_{2}-k^{-} u_{3} u_{4} \\
\partial_{t} u_{4}-d_{4} \Delta u_{4}=k^{+} u_{1} u_{2}-k^{-} u_{3} u_{4}
\end{array}\right.
\end{aligned}
$$

- Global existence of a weak solution
- The L^{p}-approach does not work
- This solution is regular (=classical) in dimension $N=1,2$
- For $N \geq 3$, the set of points around which the solution is unbounded is "small" in the sense that its Hausdorff dimension is at most $\left(N^{2}-4\right) / N$

Application to the quadratic chemical reaction:

$$
\begin{aligned}
& U_{1}+U_{2} \underset{k^{-}}{\stackrel{k^{+}}{+}} U_{3}+U_{4} \\
& \left\{\begin{array}{c}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=k^{+} u_{1} u_{2}-k^{-} u_{3} u_{4} \\
\partial_{t} u_{4}-d_{4} \Delta u_{4}=k^{+} u_{1} u_{2}-k^{-} u_{3} u_{4}
\end{array}\right.
\end{aligned}
$$

- Global existence of a weak solution
- The L^{p}-approach does not work
- This solution is regular (=classical) in dimension $N=1,2$
- For $N \geq 3$, the set of points around which the solution is unbounded is "small" in the sense that its Hausdorff dimension is at most $\left(N^{2}-4\right) / N$
- Open problem: does the solution blow up in $L^{\infty}(\Omega)$ in finite time or not??

Some references for the quadratic chemical reaction：

$$
\left\{\begin{array}{c}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=k^{+} u_{1} u_{2}-k^{-} u_{3} u_{4} \\
\partial_{t} u_{4}-d_{4} \Delta u_{4}=k^{+} u_{1} u_{2}-k^{-} u_{3} u_{4}
\end{array}\right.
$$

Some references for the quadratic chemical reaction:

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=k^{+} u_{1} u_{2}-k^{-} u_{3} u_{4} \\
\partial_{t} u_{4}-d_{4} \Delta u_{4}=k^{+} u_{1} u_{2}-k^{-} u_{3} u_{4}
\end{array}\right.
$$

- - M.P. (L ${ }^{1}$-theorem: global weak solutions);
- L. Desvillettes, K. Fellner, M.P., J. Vovelle: different proof using entropy inequality and based on $(L \log L)^{2}$-estimates on u_{i}.
- Strong solutions for $N=1$: L. Desvillettes, K. Fellner
- Strong solutions for $N \leq 2$: J. Pruess-Th. Goudon, A.

Vasseur-J. A Cañizo, L. Desvillettes, K. Fellner

- estimate on the size of the "blow-up set" when $N \geq 3$: Th.

Goudon, A. Vasseur

Some references for the quadratic chemical reaction:

$$
\left\{\begin{array}{c}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-k^{+} u_{1} u_{2}+k^{-} u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=k^{+} u_{1} u_{2}-k^{-} u_{3} u_{4} \\
\partial_{t} u_{4}-d_{4} \Delta u_{4}=k^{+} u_{1} u_{2}-k^{-} u_{3} u_{4}
\end{array}\right.
$$

- - M.P. (L¹-theorem: global weak solutions);
- L. Desvillettes, K. Fellner, M.P., J. Vovelle: different proof using entropy inequality and based on $(L \log L)^{2}$-estimates on u_{i}.
- Strong solutions for $N=1$: L. Desvillettes, K. Fellner
- Strong solutions for $N \leq 2$: J. Pruess-Th. Goudon, A.

Vasseur-J. A Cañizo, L. Desvillettes, K. Fellner

- estimate on the size of the "blow-up set" when $N \geq 3$: Th.

Goudon, A. Vasseur

- And also, strong solutions for (rather general) strongly subquadratic systems: J.I. Kanel-M. Caputo, A. Vasseur

Idea of the proof of the L^{2}-estimate

$$
\partial_{t}\left(\sum_{i} u_{i}\right)-\Delta\left(\sum_{i} d_{i} u_{i}\right) \leq 0
$$

Idea of the proof of the L^{2}-estimate

$$
\begin{gathered}
\partial_{t}\left(\sum_{i} u_{i}\right)-\Delta\left(\sum_{i} d_{i} u_{i}\right) \leq 0 . \\
\partial_{t} W-\Delta(A W) \leq 0, \quad W=\sum_{i} u_{i} A=\frac{\sum_{i} d_{i} u_{i}}{\sum_{i} u_{i}}
\end{gathered}
$$

Idea of the proof of the L^{2}-estimate

$$
\begin{gathered}
\partial_{t}\left(\sum_{i} u_{i}\right)-\Delta\left(\sum_{i} d_{i} u_{i}\right) \leq 0 \\
\partial_{t} W-\Delta(A W) \leq 0, \quad W=\sum_{i} u_{i} \quad A=\frac{\sum_{i} d_{i} u_{i}}{\sum_{i} u_{i}} \\
0 \leq \min _{i} d_{i} \leq A=\frac{\sum_{i} d_{i} u_{i}}{\sum_{i} u_{i}} \leq \max _{i} d_{i}<+\infty
\end{gathered}
$$

Idea of the proof of the L^{2}-estimate

$$
\begin{gathered}
\partial_{t}\left(\sum_{i} u_{i}\right)-\Delta\left(\sum_{i} d_{i} u_{i}\right) \leq 0 \\
\partial_{t} W-\Delta(A W) \leq 0, \quad W=\sum_{i} u_{i} \quad A=\frac{\sum_{i} d_{i} u_{i}}{\sum_{i} u_{i}} \\
0 \leq \min _{i} d_{i} \leq A=\frac{\sum_{i} d_{i} u_{i}}{\sum_{i} u_{i}} \leq \max _{i} d_{i}<+\infty
\end{gathered}
$$

- The operator $W \rightarrow \partial_{t} W-\Delta(A W)$ is not of divergence form and A is not continuous, but bounded from above and from below so that the operator is parabolic and, at least:

$$
\|W\|_{L^{2}\left(Q_{T}\right)} \leq C\left\|W_{0}\right\|_{L^{2}(\Omega)}
$$

Idea of the proof of the L^{2}-estimate

$$
\begin{gathered}
\partial_{t}\left(\sum_{i} u_{i}\right)-\Delta\left(\sum_{i} d_{i} u_{i}\right) \leq 0 \\
\partial_{t} W-\Delta(A W) \leq 0, \quad W=\sum_{i} u_{i} \quad A=\frac{\sum_{i} d_{i} u_{i}}{\sum_{i} u_{i}} \\
0 \leq \min _{i} d_{i} \leq A=\frac{\sum_{i} d_{i} u_{i}}{\sum_{i} u_{i}} \leq \max _{i} d_{i}<+\infty
\end{gathered}
$$

- The operator $W \rightarrow \partial_{t} W-\Delta(A W)$ is not of divergence form and A is not continuous, but bounded from above and from below so that the operator is parabolic and, at least:

$$
\|W\|_{L^{2}\left(Q_{T}\right)} \leq C\left\|W_{0}\right\|_{L^{2}(\Omega)}
$$

- We may even show that the mapping $W_{0} \in L^{2}(\Omega) \rightarrow W \in L^{2}\left(Q_{T}\right)$ is compact where $\partial_{t} W-\Delta(A W)=0, W(0)=W_{0}$.

A proof of the linear L^{2}-estimate: by duality

Introduce the dual problem

$$
\left\{\begin{array}{l}
-\partial_{t} \psi-A \Delta \psi=\Theta \in C_{0}^{\infty}\left(Q_{T}\right)^{+} \tag{1}\\
\psi(T)=0, \partial_{\nu} \psi=0 \text { on } \Sigma_{T}
\end{array}\right.
$$

Then, from $\partial_{t} W-\Delta(A W) \leq 0$, we deduce

$$
\int_{Q_{T}} W \Theta=\int_{\Omega} \psi(0) W_{0} \leq\|\psi(0)\|_{L^{2}(\Omega}\left\|W_{0}\right\|_{L^{2}(\Omega)}
$$

But multiplying (2) by $-\Delta \psi$ gives

$$
\begin{gathered}
\int_{Q_{T}} \Delta \psi \partial_{t} \psi+A(\Delta \psi)^{2}=-\int_{Q_{T}} \Theta \Delta \psi \\
\int_{Q_{T}} \Delta \psi \partial_{t} \psi=-\int_{Q_{T}} \nabla \psi \partial_{t} \nabla \psi=-\frac{1}{2} \int_{Q_{T}} \partial_{t}|\nabla \psi|^{2}=\frac{1}{2} \int_{\Omega}|\nabla \psi(0)|^{2} \geq 0
\end{gathered}
$$

L^{2}-bound and even L^{2}-compactness !

$$
\left\{\begin{array}{l}
-\partial_{t} \psi-A \Delta \psi=\Theta \in C_{0}^{\infty}\left(Q_{T}\right)^{+} \tag{2}\\
\psi(T)=0, \partial_{\nu} \psi=0 \text { on } \Sigma_{T}
\end{array}\right.
$$

We deduce, for various $C=C(\underline{d}, \bar{d}, T)$:

$$
\begin{gathered}
\int_{Q_{T}}(\Delta \psi)^{2} \leq C \int_{Q_{T}} \Theta^{2}, \int_{Q_{T}}\left(\partial_{t} \psi\right)^{2} \leq C \int_{Q_{T}} \Theta^{2}, \\
\int_{\Omega}(\psi(0))^{2}+\int_{\Omega}|\nabla \psi(0)|^{2} \leq C \int_{Q_{T}} \Theta^{2} \\
\int_{Q_{T}} W \Theta=\int_{\Omega} W_{0} \psi(0) \leq C\left\|W_{0}\right\|_{L^{2}(\Omega)}\|\Theta\|_{L^{2}\left(Q_{T}\right)} . \\
\Rightarrow\|W\|_{L^{2}\left(Q_{T}\right)} \leq C\left\|W_{0}\right\|_{L^{2}(\Omega)} .
\end{gathered}
$$

Even better: $W_{0} \in L^{2}(\Omega) \rightarrow W \in L^{2}\left(Q_{T}\right)$ is compact ! since $\Theta \in L^{2}\left(Q_{T}\right) \rightarrow \psi(0) \in L^{2}(\Omega)$ is compact

Three extensions of the L^{2}-estimate: (1)

- It extends to nonlinear diffusions of the form

$$
\partial_{t} u_{i}-\nabla \cdot\left(d_{i}\left(u_{i}\right) \nabla u_{i}\right)=f_{i}(u), \underline{d} \leq d_{i} \leq \bar{d} .
$$

Three extensions of the L^{2}-estimate: (1)

- It extends to nonlinear diffusions of the form

$$
\partial_{t} u_{i}-\nabla \cdot\left(d_{i}\left(u_{i}\right) \nabla u_{i}\right)=f_{i}(u), \underline{d} \leq d_{i} \leq \bar{d} .
$$

- if $D_{i}(r)=\int_{0}^{r} d_{i}(s) d s$, Condition (M) implies

$$
\partial_{t}\left(\sum_{i} u_{i}\right)-\Delta\left(\sum_{i} D_{i}\left(u_{i}\right)\right)=\sum_{i} f_{i} \leq 0
$$

Three extensions of the L^{2}－estimate：（1）

－It extends to nonlinear diffusions of the form

$$
\partial_{t} u_{i}-\nabla \cdot\left(d_{i}\left(u_{i}\right) \nabla u_{i}\right)=f_{i}(u), \underline{d} \leq d_{i} \leq \bar{d} .
$$

－if $D_{i}(r)=\int_{0}^{r} d_{i}(s) d s$ ，Condition（M）implies

$$
\begin{gathered}
\partial_{t}\left(\sum_{i} u_{i}\right)-\Delta\left(\sum_{i} D_{i}\left(u_{i}\right)\right)=\sum_{i} f_{i} \leq 0 \\
\partial_{t} W-\Delta(A W) \leq 0, W=\sum_{i} u_{i}, A=\frac{\sum_{i} D_{i}\left(u_{i}\right)}{\sum_{i} u_{i}} .
\end{gathered}
$$

Three extensions of the L^{2}-estimate: (1)

- It extends to nonlinear diffusions of the form

$$
\partial_{t} u_{i}-\nabla \cdot\left(d_{i}\left(u_{i}\right) \nabla u_{i}\right)=f_{i}(u), \underline{d} \leq d_{i} \leq \bar{d}
$$

- if $D_{i}(r)=\int_{0}^{r} d_{i}(s) d s$, Condition (M) implies

$$
\begin{gathered}
\partial_{t}\left(\sum_{i} u_{i}\right)-\Delta\left(\sum_{i} D_{i}\left(u_{i}\right)\right)=\sum_{i} f_{i} \leq 0 \\
\partial_{t} W-\Delta(A W) \leq 0, W=\sum_{i} u_{i}, A=\frac{\sum_{i} D_{i}\left(u_{i}\right)}{\sum_{i} u_{i}} . \\
\underline{d}=\frac{\sum_{i} \underline{d} u_{i}}{\sum_{i} u_{i}}=A=\frac{\sum_{i} D_{i}\left(u_{i}\right)}{\sum_{i} u_{i}}=\frac{\sum_{\bar{d}} u_{i}}{\sum_{i} u_{i}}=\bar{d} .
\end{gathered}
$$

Three extensions of the L^{2}－estimate：$\left.(2): u_{0} \in L^{1}(\Omega)\right)$

－Recall：

$$
\partial_{t} W-\Delta(A W) \leq 0 \Rightarrow\|W\|_{L^{2}\left(Q_{T}\right)} \leq C\left\|W_{0}\right\|_{L^{2}(\Omega)}
$$

Three extensions of the L^{2}-estimate: $\left.(2): u_{0} \in L^{1}(\Omega)\right)$

- Recall:

$$
\partial_{t} W-\Delta(A W) \leq 0 \Rightarrow\|W\|_{L^{2}\left(Q_{T}\right)} \leq C\left\|W_{0}\right\|_{L^{2}(\Omega)}
$$

- This $L^{2}\left(Q_{T}\right)$-estimate is replaced by a regularizing effect from $L^{1}(\Omega)$ into $L^{2}\left(Q_{\tau, T}\right), Q_{\tau, T}=(\tau, T) \times \Omega$, namely

$$
\|W\|_{L^{2}\left(Q_{T}, \tau\right)} \leq \frac{C(\underline{d}, \bar{d}, T)}{\tau^{N / 4}}\left\|W_{0}\right\|_{L^{1}(\Omega)} .
$$

Three extensions of the L^{2}-estimate: $\left.(2): u_{0} \in L^{1}(\Omega)\right)$

- Recall:

$$
\partial_{t} W-\Delta(A W) \leq 0 \Rightarrow\|W\|_{L^{2}\left(Q_{T}\right)} \leq C\left\|W_{0}\right\|_{L^{2}(\Omega)}
$$

- This $L^{2}\left(Q_{T}\right)$-estimate is replaced by a regularizing effect from $L^{1}(\Omega)$ into $L^{2}\left(Q_{\tau, T}\right), Q_{\tau, T}=(\tau, T) \times \Omega$, namely

$$
\|W\|_{L^{2}\left(Q_{T, \tau}\right)} \leq \frac{C(\underline{d}, \bar{d}, T)}{\tau^{N / 4}}\left\|W_{0}\right\|_{L^{1}(\Omega)} .
$$

- This allows to solve Systems of type (P)+(M) with quadratic reaction terms and with initial data in $L^{1}(\Omega)$ only.

Three extensions of the L^{2}-estimate (3): A third one: $L^{2+\epsilon}$

(by J.A. Cañizo, L. Desvillettes, K. Fellner):

- There exists $\epsilon(N)>0$ such that

$$
\|W\|_{L^{2+\epsilon}\left(Q_{T}\right)} \leq C\left\|W_{0}\right\|_{L^{2+\epsilon}(\Omega)}
$$

Three extensions of the L^{2}－estimate（3）：A third one：$L^{2+\epsilon}$

（by J．A．Cañizo，L．Desvillettes，K．Fellner）：
－There exists $\epsilon(N)>0$ such that

$$
\|W\|_{L^{2+\epsilon}\left(Q_{T}\right)} \leq C\left\|W_{0}\right\|_{L^{2+\epsilon}(\Omega)}
$$

－Allows $L^{1+\epsilon / 2}$－estimates on quadratic reaction－diffusion terms \mapsto more direct approach of limit cases like when $N=2$ ，or when the diffusion coefficients are close to each other，．．．

Three extensions of the L^{2}-estimate (3): A third one: $L^{2+\epsilon}$

(by J.A. Cañizo, L. Desvillettes, K. Fellner):

- There exists $\epsilon(N)>0$ such that

$$
\|W\|_{L^{2+\epsilon}\left(Q_{T}\right)} \leq C\left\|W_{0}\right\|_{L^{2+\epsilon}(\Omega)} .
$$

- Allows $L^{1+\epsilon / 2}$-estimates on quadratic reaction-diffusion terms \mapsto more direct approach of limit cases like when $N=2$, or when the diffusion coefficients are close to each other,.. .
- Allows global weak solutions for reaction terms growing faster than quadratic (growth depending on the dimension)

Three extensions of the L^{2}-estimate (3): A third one: $L^{2+\epsilon}$

(by J.A. Cañizo, L. Desvillettes, K. Fellner):

- There exists $\epsilon(N)>0$ such that

$$
\|W\|_{L^{2+\epsilon}\left(Q_{T}\right)} \leq C\left\|W_{0}\right\|_{L^{2+\epsilon}(\Omega)} .
$$

- Allows $L^{1+\epsilon / 2}$-estimates on quadratic reaction-diffusion terms \mapsto more direct approach of limit cases like when $N=2$, or when the diffusion coefficients are close to each other,...
- Allows global weak solutions for reaction terms growing faster than quadratic (growth depending on the dimension)
- Better results on asymptotic behaviors...

Applications of the L^{2}-compactness to singular limits: (1)

$$
U_{1}+U_{2} \frac{1}{k_{1}} C \frac{k_{2}}{=} U_{3}+U_{4}
$$

Applications of the L^{2}-compactness to singular limits: (1)

$$
U_{1}+U_{2} \underset{k_{1}}{\stackrel{1}{k_{1}}} C \frac{k_{2}}{\stackrel{1}{1}} U_{3}+U_{4}
$$

- The intermediate C is highly reactive, so that we may assume that $k_{1}, k_{2} \rightarrow+\infty$.
What is the limit kinetics when space diffusion occurs?

Applications of the L^{2}-compactness to singular limits: (1)

$$
U_{1}+U_{2} \frac{1}{\overrightarrow{k_{1}}} C \frac{k_{2}}{1} U_{3}+U_{4}
$$

- The intermediate C is highly reactive, so that we may assume that $k_{1}, k_{2} \rightarrow+\infty$. What is the limit kinetics when space diffusion occurs?
- Mass Action law + Fick's diffusion law lead to the system

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} c-d_{c} \Delta c=u_{1} u_{2}-\left(k_{1}+k_{2}\right) c+u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=-u_{3} u_{4}+k_{2} c \\
\partial_{t} u_{4}-d_{4} \Delta u_{4}=-u_{3} u_{4}+k_{2} c,
\end{array}\right\} \text { on } Q_{T}
$$

Applications of the L^{2}-compactness to singular limits: (1)

$$
U_{1}+U_{2} \frac{1}{k_{1}} C \frac{k_{2}}{\underset{1}{1}} U_{3}+U_{4}
$$

- The intermediate C is highly reactive, so that we may assume that $k_{1}, k_{2} \rightarrow+\infty$. What is the limit kinetics when space diffusion occurs?
- Mass Action law + Fick's diffusion law lead to the system

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} c-d_{c} \Delta c=u_{1} u_{2}-\left(k_{1}+k_{2}\right) c+u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=-u_{3} u_{4}+k_{2} c \\
\partial_{t} u_{4}-d_{4} \Delta u_{4}=-u_{3} u_{4}+k_{2} c,
\end{array}\right\} \text { on } Q_{T}
$$

- The L^{p}-approach applies to this system so that global existence of classical solutions holds!

Case of the O.D.E. system when $k_{1}+k_{2} \rightarrow+\infty$

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} u_{2}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} c=u_{1} u_{2}-\left(k_{1}+k_{2}\right) c+u_{3} u_{4} \\
\partial_{t} u_{3}=-u_{3} u_{4}+k_{2} c \\
\partial_{t} u_{4}=-u_{3} u_{4}+k_{2} c
\end{array}\right.
$$

Case of the O．D．E．system when $k_{1}+k_{2} \rightarrow+\infty$

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} u_{2}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} c=u_{1} u_{2}-\left(k_{1}+k_{2}\right) c+u_{3} u_{4} \\
\partial_{t} u_{3}=-u_{3} u_{4}+k_{2} c \\
\partial_{t} u_{4}=-u_{3} u_{4}+k_{2} c
\end{array}\right.
$$

－Quasi－steady state approximation：

$$
\begin{aligned}
& " \partial_{t} c=0 " \text { as } " k_{1}+k_{2}=+\infty " \\
& \text { or } \lim \left[\left(k_{1}+k_{2}\right) c-u_{1} u_{2}-u_{3} u_{4}\right]=0
\end{aligned}
$$

so that c may be eliminated in the limit system ：

Case of the O.D.E. system when $k_{1}+k_{2} \rightarrow+\infty$

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} u_{2}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} c=u_{1} u_{2}-\left(k_{1}+k_{2}\right) c+u_{3} u_{4} \\
\partial_{t} u_{3}=-u_{3} u_{4}+k_{2} c \\
\partial_{t} u_{4}=-u_{3} u_{4}+k_{2} c,
\end{array}\right.
$$

- Quasi-steady state approximation:
" $\partial_{t} c=0$ " as " $k_{1}+k_{2}=+\infty$ "
or $\lim \left[\left(k_{1}+k_{2}\right) c-u_{1} u_{2}-u_{3} u_{4}\right]=0$
so that c may be eliminated in the limit system :
- $\partial_{t} u_{1}=-u_{1} u_{2}+\lim \frac{k_{1}}{k_{1}+k_{2}}\left(u_{1} u_{2}+u_{3} u_{4}\right)$
or
$\partial_{t} u_{1}=-\alpha u_{1} u_{2}+(1-\alpha) u_{3} u_{4}$
with $\alpha=\lim _{k_{1}+k_{2} \rightarrow+\infty} \frac{k_{2}}{k_{1}+k_{2}}$.

Case of the O.D.E. system when $k_{1}+k_{2} \rightarrow+\infty$

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} u_{2}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} c=u_{1} u_{2}-\left(k_{1}+k_{2}\right) c+u_{3} u_{4} \\
\partial_{t} u_{3}=-u_{3} u_{4}+k_{2} c \\
\partial_{t} u_{4}=-u_{3} u_{4}+k_{2} c
\end{array}\right.
$$

- The limit system may be obtained:

$$
\left\{\begin{aligned}
\partial_{t} u_{1} & =-\alpha u_{1} u_{2}+(1-\alpha) u_{3} u_{4} \\
\partial_{t} u_{2} & =-\alpha u_{1} u_{2}+(1-\alpha) u_{3} u_{4} \\
\partial_{t} u_{3} & =\alpha u_{1} u_{2}-(1-\alpha) u_{3} u_{4} \\
\partial_{t} u_{4} & =\alpha u_{1} u_{2}-(1-\alpha) u_{3} u_{4}
\end{aligned}\right.
$$

with $\alpha=\lim _{k_{1}+k_{2} \rightarrow+\infty} \frac{k_{2}}{k_{1}+k_{2}}$.

Case of the O.D.E. system when $k_{1}+k_{2} \rightarrow+\infty$

The reaction

$$
U_{1}+U_{2} \frac{1}{\stackrel{\rightharpoonup}{k_{1}}} C \underset{\underset{1}{k_{2}}}{\stackrel{k_{2}}{1}} U_{3}+U_{4}
$$

'tends' to the limit dynamics

$$
U_{1}+U_{2} \underset{1}{\stackrel{\alpha}{\rightleftharpoons}} \alpha U_{3}+U_{4}
$$

+ convergence of the solutions of the corresponding systems.
Note the boundary layer at $t=0$: the new initial values are $u_{1}^{0}+\alpha c^{0}, u_{2}^{0}+\alpha c^{0}, u_{3}^{0}+(1-\alpha) c^{0}, u_{4}^{0}+(1-\alpha) c^{0}$.

$k_{1}+k_{2} \rightarrow+\infty$ for the full system?

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} c-d_{c} \Delta c=u_{1} u_{2}-\left(k_{1}+k_{2}\right) c+u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=-u_{3} u_{4}+k_{2} c \\
\partial_{t} u_{4}-d_{4} \Delta u_{4}=-u_{3} u_{4}+k_{2} c
\end{array}\right.
$$

$k_{1}+k_{2} \rightarrow+\infty$ for the full system？

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} c-d_{c} \Delta c=u_{1} u_{2}-\left(k_{1}+k_{2}\right) c+u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=-u_{3} u_{4}+k_{2} c \\
\partial_{t} u_{4}-d_{4} \Delta u_{4}=-u_{3} u_{4}+k_{2} c
\end{array}\right.
$$

－Quasi－steady state approximation：

$$
\begin{aligned}
& " \partial_{t} c-d_{c} \Delta c=0 " \text { as } " k_{1}+k_{2}=+\infty " \\
& \text { or } \lim \left[\left(k_{1}+k_{2}\right) c-u_{1} u_{2}-u_{3} u_{4}\right]=0
\end{aligned}
$$

$$
\text { so that } c \rightarrow 0 \text { and may be eliminated in the limit system : }
$$

$k_{1}+k_{2} \rightarrow+\infty$ for the full system?

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} c-d_{c} \Delta c=u_{1} u_{2}-\left(k_{1}+k_{2}\right) c+u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=-u_{3} u_{4}+k_{2} c \\
\partial_{t} u_{4}-d_{4} \Delta u_{4}=-u_{3} u_{4}+k_{2} c
\end{array}\right.
$$

- Quasi-steady state approximation:
$" \partial_{t} c-d_{c} \Delta c=0 "$ as " $k_{1}+k_{2}=+\infty "$
or $\lim \left[\left(k_{1}+k_{2}\right) c-u_{1} u_{2}-u_{3} u_{4}\right]=0$
so that $c \rightarrow 0$ and may be eliminated in the limit system :
- $\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}+\lim \frac{k_{1}}{k_{1}+k_{2}}\left(u_{1} u_{2}+u_{3} u_{4}\right)$
or
$\partial_{t} u_{1}-d_{1} \Delta u_{1}=-\alpha u_{1} u_{2}+(1-\alpha) u_{3} u_{4}$
with $\alpha=\lim _{k_{1}+k_{2} \rightarrow+\infty} \frac{k_{2}}{k_{1}+k_{2}}$.

$k_{1}+k_{2} \rightarrow+\infty$ for the full system？

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} c-d_{c} \Delta c=u_{1} u_{2}-\left(k_{1}+k_{2}\right) c+u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=-u_{3} u_{4}+k_{2} c \\
\partial_{t} u_{4}-d_{4} \Delta u_{4}=-u_{3} u_{4}+k_{2} c
\end{array}\right.
$$

－The limit system may（formally）be obtained：

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-\alpha u_{1} u_{2}+(1-\alpha) u_{3} u_{4} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-\alpha u_{1} u_{2}+(1-\alpha) u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=\alpha u_{1} u_{2}-(1-\alpha) u_{3} u_{4} \\
\partial_{t} u_{4}-d_{4} \Delta u_{4}=\alpha u_{1} u_{2}-(1-\alpha) u_{3} u_{4}
\end{array}\right.
$$

$k_{1}+k_{2} \rightarrow+\infty$ for the full system?

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-u_{1} u_{2}+k_{1} c \\
\partial_{t} c-d_{c} \Delta c=u_{1} u_{2}-\left(k_{1}+k_{2}\right) c+u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=-u_{3} u_{4}+k_{2} c \\
\partial_{t} u_{4}-d_{4} \Delta u_{4}=-u_{3} u_{4}+k_{2} c
\end{array}\right.
$$

- The limit system may (formally) be obtained:

$$
\left\{\begin{aligned}
\partial_{t} u_{1}-d_{1} \Delta u_{1} & =-\alpha u_{1} u_{2}+(1-\alpha) u_{3} u_{4} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2} & =-\alpha u_{1} u_{2}+(1-\alpha) u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3} & =\alpha u_{1} u_{2}-(1-\alpha) u_{3} u_{4} \\
\partial_{t} u_{4}-d_{4} \Delta u_{4} & =\alpha u_{1} u_{2}-(1-\alpha) u_{3} u_{4}
\end{aligned}\right.
$$

- Again, formally the chemical reaction

$$
U_{1}+U_{2} \frac{1}{\underset{k_{1}}{\rightleftharpoons}} C \frac{k_{2}}{\underset{1}{1}} \quad U_{3}+U_{4}
$$

"tends" to the limit chemical reaction:

$$
U_{1}+U_{2} \quad 1 \stackrel{N}{\leftrightharpoons} \alpha U_{3}+U_{4}
$$

The limit system

- Theorem. The solution $\left(u_{1}^{k}, u_{2}^{k}, c^{k}, u_{3}^{k}, u_{4}^{k}\right), k=\left(k_{1}, k_{2}\right)$ of the previous system converges as $k_{1}+k_{2} \rightarrow+\infty$ in $L^{2}\left(Q_{T}\right)^{5}$ for all $T>0$ to $\left(u_{1}, u_{2}, 0, u_{3}, u_{4}\right)$ solution of

$$
\left\{\begin{aligned}
& \partial_{t} u_{1}-d_{1} \Delta u_{1}=-\alpha u_{1} u_{2}+\beta u_{3} u_{4} \\
& \partial_{t} u_{2}-d_{2} \Delta u_{2}=-\alpha u_{1} u_{2}+\beta u_{3} u_{4} \\
& \partial_{t} u_{3}-d_{3} \Delta u_{3}=\alpha u_{1} u_{2}-\beta u_{3} u_{4} \\
& \partial_{t} u_{4}-d_{4} \Delta u_{4}=\alpha u_{1} u_{2}-\beta u_{3} u_{4}
\end{aligned}\right.
$$

where $\alpha=\lim _{k_{1}+k_{2} \rightarrow \infty} \frac{k_{2}}{k_{1}+k_{2}}, \beta=1-\alpha$.

The limit system

- Theorem. The solution $\left(u_{1}^{k}, u_{2}^{k}, c^{k}, u_{3}^{k}, u_{4}^{k}\right), k=\left(k_{1}, k_{2}\right)$ of the previous system converges as $k_{1}+k_{2} \rightarrow+\infty$ in $L^{2}\left(Q_{T}\right)^{5}$ for all $T>0$ to $\left(u_{1}, u_{2}, 0, u_{3}, u_{4}\right)$ solution of

$$
\left\{\begin{array}{c}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-\alpha u_{1} u_{2}+\beta u_{3} u_{4} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-\alpha u_{1} u_{2}+\beta u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=\alpha u_{1} u_{2}-\beta u_{3} u_{4} \\
\partial_{t} u_{4}-d_{4} \Delta u_{4}=\alpha u_{1} u_{2}-\beta u_{3} u_{4}
\end{array}\right.
$$

where $\alpha=\lim _{k_{1}+k_{2} \rightarrow \infty} \frac{k_{2}}{k_{1}+k_{2}}, \beta=1-\alpha$.

- Remark: Boundary layer at $t=0$: the new initial values are $u_{1}^{0}+\alpha c^{0}, u_{2}^{0}+\alpha c^{0}, u_{3}^{0}+(1-\alpha) c^{0}, u_{4}^{0}+(1-\alpha) c^{0}$.

The limit system

- Theorem. The solution $\left(u_{1}^{k}, u_{2}^{k}, c^{k}, u_{3}^{k}, u_{4}^{k}\right), k=\left(k_{1}, k_{2}\right)$ of the previous system converges as $k_{1}+k_{2} \rightarrow+\infty$ in $L^{2}\left(Q_{T}\right)^{5}$ for all $T>0$ to $\left(u_{1}, u_{2}, 0, u_{3}, u_{4}\right)$ solution of

$$
\left\{\begin{aligned}
\partial_{t} u_{1}-d_{1} \Delta u_{1} & =-\alpha u_{1} u_{2}+\beta u_{3} u_{4} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2} & =-\alpha u_{1} u_{2}+\beta u_{3} u_{4} \\
\partial_{t} u_{3}-d_{3} \Delta u_{3} & =\alpha u_{1} u_{2}-\beta u_{3} u_{4} \\
\partial_{t} u_{4}-d_{4} \Delta u_{4} & =\alpha u_{1} u_{2}-\beta u_{3} u_{4}
\end{aligned}\right.
$$

where $\alpha=\lim _{k_{1}+k_{2} \rightarrow \infty} \frac{k_{2}}{k_{1}+k_{2}}, \beta=1-\alpha$.

- Remark: Boundary layer at $t=0$: the new initial values are $u_{1}^{0}+\alpha c^{0}, u_{2}^{0}+\alpha c^{0}, u_{3}^{0}+(1-\alpha) c^{0}, u_{4}^{0}+(1-\alpha) c^{0}$.
- M. Bisi, F. Conforto, L. Desvillettes-D. Bothe, M.P.

Steps the proof of the L^{2}-convergence

$$
\left(S_{k}\right)\left\{\begin{array}{l}
\partial_{t} u_{1}^{k}-d_{1} \Delta u_{1}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} u_{2}^{k}-d_{2} \Delta u_{2}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} c^{k}-d_{c} \Delta c^{k}=u_{1}^{k} u_{2}^{k}-\left(k_{1}+k_{2}\right) c^{k}+u_{3}^{k} u_{4}^{k} \\
\partial_{t} u_{3}^{k}-d_{3} \Delta u_{3}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k} \\
\partial_{t} u_{4}^{k}-d_{4} \Delta u_{4}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k},
\end{array}\right.
$$

- $\partial_{t}\left(u_{1}^{k}+u_{2}^{k}+2 c^{k}+u_{3}^{k}+u_{4}^{k}\right)-\Delta\left(d_{1} u_{1}^{k}+d_{2} u_{2}^{k}+2 d_{c} c^{k}+d_{3} u_{3}^{k}+d_{4} u_{4}^{k}\right)=0$, or, setting

$$
W^{k}=u_{1}^{k}+u_{2}^{k}+2 c^{k}+u_{3}^{k}+u_{4}^{k},
$$

$$
\partial_{t} W^{k}-\Delta\left(A^{k} W^{k}\right)=0
$$

with: $\min d_{i} \leq A^{k} \leq 2 \max d_{i}$.

Steps the proof of the L^{2}-convergence

$$
\left(S_{k}\right)\left\{\begin{array}{l}
\partial_{t} u_{1}^{k}-d_{1} \Delta u_{1}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} u_{2}^{k}-d_{2} \Delta u_{2}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} c^{k}-d_{c} \Delta c^{k}=u_{1}^{k} u_{2}^{k}-\left(k_{1}+k_{2}\right) c^{k}+u_{3}^{k} u_{4}^{k} \\
\partial_{t} u_{3}^{k}-d_{3} \Delta u_{3}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k} \\
\partial_{t} u_{4}^{k}-d_{4} \Delta u_{4}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k},
\end{array}\right.
$$

- $\partial_{t}\left(u_{1}^{k}+u_{2}^{k}+2 c^{k}+u_{3}^{k}+u_{4}^{k}\right)-\Delta\left(d_{1} u_{1}^{k}+d_{2} u_{2}^{k}+2 d_{c} c^{k}+d_{3} u_{3}^{k}+d_{4} u_{4}^{k}\right)=0$, or, setting

$$
W^{k}=u_{1}^{k}+u_{2}^{k}+2 c^{k}+u_{3}^{k}+u_{4}^{k},
$$

$$
\partial_{t} W^{k}-\Delta\left(A^{k} W^{k}\right)=0
$$

with: $\min d_{i} \leq A^{k} \leq 2 \max d_{i}$.

- This implies that W^{k} is bounded in $L^{2}\left(Q_{T}\right)$ (for all T),

Steps the proof of the L^{2}-convergence

$$
\left(S_{k}\right)\left\{\begin{array}{l}
\partial_{t} u_{1}^{k}-d_{1} \Delta u_{1}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} u_{2}^{k}-d_{2} \Delta u_{2}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} c^{k}-d_{c} \Delta c^{k}=u_{1}^{k} u_{2}^{k}-\left(k_{1}+k_{2}\right) c^{k}+u_{3}^{k} u_{4}^{k} \\
\partial_{t} u_{3}^{k}-d_{3} \Delta u_{3}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k} \\
\partial_{t} u_{4}^{k}-d_{4} \Delta u_{4}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k},
\end{array}\right.
$$

- $\partial_{t}\left(u_{1}^{k}+u_{2}^{k}+2 c^{k}+u_{3}^{k}+u_{4}^{k}\right)-\Delta\left(d_{1} u_{1}^{k}+d_{2} u_{2}^{k}+2 d_{c} c^{k}+d_{3} u_{3}^{k}+d_{4} u_{4}^{k}\right)=0$, or, setting

$$
\begin{aligned}
& W^{k}=u_{1}^{k}+u_{2}^{k}+2 c^{k}+u_{3}^{k}+u_{4}^{k} \\
& \qquad \partial_{t} W^{k}-\Delta\left(A^{k} W^{k}\right)=0
\end{aligned}
$$

$$
\text { with: } \min d_{i} \leq A^{k} \leq 2 \max d_{i}
$$

- This implies that W^{k} is bounded in $L^{2}\left(Q_{T}\right)$ (for all T),
- and so are u_{i}^{k}, c^{k}.

Steps of the proof of the strong L^{2}－convergence

$$
\left(S_{k}\right)\left\{\begin{array}{l}
\partial_{t} u_{1}^{k}-d_{1} \Delta u_{1}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} u_{2}^{k}-d_{2} \Delta u_{2}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} c^{k}-d_{c} \Delta c^{k}=u_{1}^{k} u_{2}^{k}-\left(k_{1}+k_{2}\right) c^{k}+u_{3}^{k} u_{4}^{k} \\
\partial_{t} u_{3}^{k}-d_{3} \Delta u_{3}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k} \\
\partial_{t} u_{4}^{k}-d_{4} \Delta u_{4}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k},
\end{array}\right.
$$

－The nonlinearities $u_{1}^{k} u_{2}^{k}, u_{3}^{k} u_{4}^{k}$ are bounded in $L^{1}\left(Q_{T}\right), \forall T$ ， thanks to the L^{2}－estimate

Steps of the proof of the strong L^{2}-convergence

$$
\left(S_{k}\right)\left\{\begin{array}{l}
\partial_{t} u_{1}^{k}-d_{1} \Delta u_{1}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} u_{2}^{k}-d_{2} \Delta u_{2}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} c^{k}-d_{c} \Delta c^{k}=u_{1}^{k} u_{2}^{k}-\left(k_{1}+k_{2}\right) c^{k}+u_{3}^{k} u_{4}^{k} \\
\partial_{t} u_{3}^{k}-d_{3} \Delta u_{3}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k} \\
\partial_{t} u_{4}^{k}-d_{4} \Delta u_{4}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k},
\end{array}\right.
$$

- The nonlinearities $u_{1}^{k} u_{2}^{k}, u_{3}^{k} u_{4}^{k}$ are bounded in $L^{1}\left(Q_{T}\right), \forall T$, thanks to the L^{2}-estimate
- Integrating the equation in c^{k} gives

$$
\int_{\Omega} c^{k}(T)+\int_{Q_{T}}\left(k_{1}+k_{2}\right) c^{k}=\int_{\Omega} c^{0}+\int_{Q_{T}} u_{1}^{k} u_{2}^{k}+u_{3}^{k} u_{4}^{k} .
$$

Steps of the proof of the strong L^{2}-convergence

$$
\left(S_{k}\right)\left\{\begin{array}{l}
\partial_{t} u_{1}^{k}-d_{1} \Delta u_{1}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} u_{2}^{k}-d_{2} \Delta u_{2}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} c^{k}-d_{c} \Delta c^{k}=u_{1}^{k} u_{2}^{k}-\left(k_{1}+k_{2}\right) c^{k}+u_{3}^{k} u_{4}^{k} \\
\partial_{t} u_{3}^{k}-d_{3} \Delta u_{3}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k} \\
\partial_{t} u_{4}^{k}-d_{4} \Delta u_{4}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k},
\end{array}\right.
$$

- The nonlinearities $u_{1}^{k} u_{2}^{k}, u_{3}^{k} u_{4}^{k}$ are bounded in $L^{1}\left(Q_{T}\right), \forall T$, thanks to the L^{2}-estimate
- Integrating the equation in c^{k} gives

$$
\int_{\Omega} c^{k}(T)+\int_{Q_{T}}\left(k_{1}+k_{2}\right) c^{k}=\int_{\Omega} c^{0}+\int_{Q_{T}} u_{1}^{k} u_{2}^{k}+u_{3}^{k} u_{4}^{k}
$$

- All right-hand sides of the system are bounded in $L^{1}\left(Q_{T}\right)$: this implies that the sequences $\left(u_{i}^{k}\right)_{k}$ are compact in $L^{1}\left(Q_{T}\right)$ and $c^{k} \rightarrow 0$ in $L^{1}\left(Q_{T}\right) \ldots$ But, this is not enough to pass to the limit !!

Steps of the proof of the strong L^{2}-convergence

- Recall that, with $W^{k}=\sum_{i} u_{i}^{k}+2 c^{k}$,

$$
\partial_{t} W^{k}-\Delta\left(A^{k} W^{k}\right)=0, \quad W^{k}(0)=W_{0}
$$

where

$$
\begin{aligned}
& 0<\underline{d} \leq A^{k} \leq \bar{d}<+\infty . \\
& W^{k} \rightarrow W:=\sum_{i} u_{i} \text { a.e. }
\end{aligned}
$$

Steps of the proof of the strong L^{2}－convergence

－Recall that，with $W^{k}=\sum_{i} u_{i}^{k}+2 c^{k}$ ，

$$
\partial_{t} W^{k}-\Delta\left(A^{k} W^{k}\right)=0, \quad W^{k}(0)=W_{0}
$$

where

$$
\begin{aligned}
& 0<\underline{d} \leq A^{k} \leq \bar{d}<+\infty \\
& W^{k} \rightarrow W:=\sum_{i} u_{i} \text { a.e. }
\end{aligned}
$$

－But，not only this implies the $L^{2}\left(Q_{T}\right)$－estimate on W^{k} ，but it also implies the $L^{2}\left(Q_{T}\right)$－compactness of W^{k} ．
（This is an extension of the previous compactness result to the case when A^{k} is moving）．

Last steps of the proof of L^{2}-convergence

$$
\left(S_{k}\right)\left\{\begin{array}{l}
\partial_{t} u_{1}^{k}-d_{1} \Delta u_{1}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} u_{2}^{k}-d_{2} \Delta u_{2}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} c^{k}-d_{c} \Delta c^{k}=u_{1}^{k} u_{2}^{k}-\left(k_{1}+k_{2}\right) c^{k}+u_{3}^{k} u_{4}^{k} \\
\partial_{t} u_{3}^{k}-d_{3} \Delta u_{3}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k} \\
\partial_{t} u_{4}^{k}-d_{4} \Delta u_{4}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k},
\end{array}\right.
$$

- The sequence $W^{k}=\sum_{i} u_{i}^{k}+2 c^{k}$ is compact in $L^{2}\left(Q_{T}\right)$.

Last steps of the proof of L^{2}-convergence

$$
\left(S_{k}\right)\left\{\begin{array}{l}
\partial_{t} u_{1}^{k}-d_{1} \Delta u_{1}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} u_{2}^{k}-d_{2} \Delta u_{2}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} c^{k}-d_{c} \Delta c^{k}=u_{1}^{k} u_{2}^{k}-\left(k_{1}+k_{2}\right) c^{k}+u_{3}^{k} u_{4}^{k} \\
\partial_{t} u_{3}^{k}-d_{3} \Delta u_{3}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k} \\
\partial_{t} u_{4}^{k}-d_{4} \Delta u_{4}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k},
\end{array}\right.
$$

- The sequence $W^{k}=\sum_{i} u_{i}^{k}+2 c^{k}$ is compact in $L^{2}\left(Q_{T}\right)$.
- Since, for all $i, u_{i}^{k} \leq W^{k}$, and, up to a subsequence, u_{i}^{k} converges a.e., the $L^{2}\left(Q_{T}\right)$-compactness of u_{i}^{k} follows.

Last steps of the proof of L^{2}-convergence

$$
\left(S_{k}\right)\left\{\begin{array}{l}
\partial_{t} u_{1}^{k}-d_{1} \Delta u_{1}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} u_{2}^{k}-d_{2} \Delta u_{2}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} c^{k}-d_{c} \Delta c^{k}=u_{1}^{k} u_{2}^{k}-\left(k_{1}+k_{2}\right) c^{k}+u_{3}^{k} u_{4}^{k} \\
\partial_{t} u_{3}^{k}-d_{3} \Delta u_{3}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k} \\
\partial_{t} u_{4}^{k}-d_{4} \Delta u_{4}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k},
\end{array}\right.
$$

- The sequence $W^{k}=\sum_{i} u_{i}^{k}+2 c^{k}$ is compact in $L^{2}\left(Q_{T}\right)$.
- Since, for all $i, u_{i}^{k} \leq W^{k}$, and, up to a subsequence, u_{i}^{k} converges a.e., the $L^{2}\left(Q_{T}\right)$-compactness of u_{i}^{k} follows.
- $c_{k} \rightarrow 0$ so that $\partial_{t} c^{k}-d_{c} \Delta c^{k} \rightarrow 0$, in the sense of distributions (only).

Last steps of the proof of L^{2}-convergence

$$
\left(S_{k}\right)\left\{\begin{array}{l}
\partial_{t} u_{1}^{k}-d_{1} \Delta u_{1}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} u_{2}^{k}-d_{2} \Delta u_{2}^{k}=-u_{1}^{k} u_{2}^{k}+k_{1} c^{k} \\
\partial_{t} c^{k}-d_{c} \Delta c^{k}=u_{1}^{k} u_{2}^{k}-\left(k_{1}+k_{2}\right) c^{k}+u_{3}^{k} u_{4}^{k} \\
\partial_{t} u_{3}^{k}-d_{3} \Delta u_{3}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k} \\
\partial_{t} u_{4}^{k}-d_{4} \Delta u_{4}^{k}=-u_{3}^{k} u_{4}^{k}+k_{2} c^{k},
\end{array}\right.
$$

- The sequence $W^{k}=\sum_{i} u_{i}^{k}+2 c^{k}$ is compact in $L^{2}\left(Q_{T}\right)$.
- Since, for all $i, u_{i}^{k} \leq W^{k}$, and, up to a subsequence, u_{i}^{k} converges a.e., the $L^{2}\left(Q_{T}\right)$-compactness of u_{i}^{k} follows.
- $c_{k} \rightarrow 0$ so that $\partial_{t} c^{k}-d_{c} \Delta c^{k} \rightarrow 0$, in the sense of distributions (only).
- Same computations as for the O.D.E. to prove convergence toward the expected limit system. QED

Applications of the L^{2}-estimate to singular limits: (2)

- (D. Bothe, MP, G. Rolland, '11)

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-k\left[u_{1} u_{2}-u_{3}\right] \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-k\left[u_{1} u_{2}-u_{3}\right] \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=k\left[u_{1} u_{2}-u_{3}\right] \\
U_{1}+U_{2} \frac{k}{\bar{k}} U_{3}
\end{array}\right.
$$

For fixed k : global existence of classical solutions u^{k}.

Applications of the L^{2}－estimate to singular limits：（2）

－（D．Bothe，MP，G．Rolland，＇11）

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-k\left[u_{1} u_{2}-u_{3}\right] \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-k\left[u_{1} u_{2}-u_{3}\right] \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=k\left[u_{1} u_{2}-u_{3}\right] \\
U_{1}+U_{2} \frac{k}{\bar{k}} U_{3}
\end{array}\right.
$$

For fixed k ：global existence of classical solutions u^{k} ．
－What is the limit kinetics when $k \rightarrow+\infty$ ？

Applications of the L^{2}-estimate to singular limits: (2)

- (D. Bothe, MP, G. Rolland, '11)

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-k\left[u_{1} u_{2}-u_{3}\right] \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-k\left[u_{1} u_{2}-u_{3}\right] \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=k\left[u_{1} u_{2}-u_{3}\right] \\
U_{1}+U_{2} \frac{k}{\hbar} U_{3}
\end{array}\right.
$$

For fixed k : global existence of classical solutions u^{k}.

- What is the limit kinetics when $k \rightarrow+\infty$?
- Estimates independent of k :

$$
\sup _{t}\left\|u_{i}^{k}(t)\right\|_{L^{1}(\Omega)} \leq C, \forall T>0,\left\|u_{i}^{k}\right\|_{L^{2}\left(Q_{T}\right)} \leq C
$$

Applications of the L^{2}-estimate to singular limits: (2)

- (D. Bothe, MP, G. Rolland, '11)

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-k\left[u_{1} u_{2}-u_{3}\right] \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-k\left[u_{1} u_{2}-u_{3}\right] \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=k\left[u_{1} u_{2}-u_{3}\right] \\
U_{1}+U_{2} \frac{k}{\bar{k}} U_{3}
\end{array}\right.
$$

For fixed k : global existence of classical solutions u^{k}.

- What is the limit kinetics when $k \rightarrow+\infty$?
- Estimates independent of k :

$$
\sup _{t}\left\|u_{i}^{k}(t)\right\|_{L^{1}(\Omega)} \leq C, \forall T>0,\left\|u_{i}^{k}\right\|_{L^{2}\left(Q_{T}\right)} \leq C
$$

- A main difficulty: what about $k\left[u_{1} u_{2}-u_{3}\right]$?

Case $d_{1}=d_{2}=d_{3}=d$

$\partial_{t}\left(u_{1}^{k}+u_{2}^{k}+2 u_{3}^{k}\right)-d \Delta\left(u_{1}^{k}+u_{2}^{k}+2 u_{3}^{k}\right)=0$
and by maximum principle

$$
\forall i, t,\left\|\left(u_{1}^{k}+u_{2}^{k}+2 u_{3}^{k}\right)(t)\right\|_{L^{\infty}(\Omega)} \leq\left\|u_{1}^{0}+u_{2}^{0}+2 u_{3}^{0}\right\|_{L^{\infty}(\Omega)} .
$$

Moreover, it may be proved (D. Bothe) that, as $k \rightarrow+\infty$

$$
\left\|k\left[u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right]\right\|_{L^{1}\left(Q_{T}\right)} \leq C \text { independent of } k .
$$

Then, it follows that the u_{i}^{k} converge, at least in any $L^{p}\left(Q_{T}\right)$, $p<+\infty$, to the unique regular nonnegative solution of

$$
\left\{\begin{array}{c}
\partial_{t}\left(u_{1}+u_{3}\right)-d \Delta\left(u_{1}+u_{3}\right)=0 \\
\partial_{t}\left(u_{2}+u_{3}\right)-d \Delta\left(u_{2}+u_{3}\right)=0
\end{array}\right\}+\text { boundary cond. }
$$

Case of different diffusions $d_{1} \neq d_{2} \neq d_{3}$

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}^{k}-d_{1} \Delta u_{1}^{k}=-k\left[u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right] \\
\partial_{t} u_{2}^{k}-d_{2} \Delta u_{2}^{k}=-k\left[u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right] \\
\partial_{t} u_{3}^{k}-d_{3} \Delta u_{3}^{k}=k\left[u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right]
\end{array}\right.
$$

- A main difficulty: no a priori $L^{1}\left(Q_{T}\right)$-estimate on $k\left(u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right)$ seems to be true!

Case of different diffusions $d_{1} \neq d_{2} \neq d_{3}$

$$
\left\{\begin{array}{c}
\partial_{t} u_{1}^{k}-d_{1} \Delta u_{1}^{k}=-k\left[u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right] \\
\partial_{t} u_{2}^{k}-d_{2} \Delta u_{2}^{k}=-k\left[u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right] \\
\partial_{t} u_{3}^{k}-d_{3} \Delta u_{3}^{k}=k\left[u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right]
\end{array}\right.
$$

- On the other hand, for $i=1,2$, we have

$$
\left\{\begin{array}{l}
\partial_{t}\left(u_{i}^{k}+u_{3}^{k}\right)-\Delta\left[A_{1}^{k}\left(u_{i}^{k}+u_{3}^{k}\right)\right]=0 \\
0<\min \left\{d_{i}, d_{3}\right\} \leq A_{i}^{k}:=\frac{u_{i}^{k}+u_{3}^{k}}{d_{i} u_{i}^{k}+d_{3} u_{3}^{k}} \leq \max \left\{d_{i}, d_{3}\right\}<+\infty .
\end{array}\right.
$$

Case of different diffusions $d_{1} \neq d_{2} \neq d_{3}$

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}^{k}-d_{1} \Delta u_{1}^{k}=-k\left[u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right] \\
\partial_{t} u_{2}^{k}-d_{2} \Delta u_{2}^{k}=-k\left[u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right] \\
\partial_{t} u_{3}^{k}-d_{3} \Delta u_{3}^{k}=k\left[u_{1}^{u} u_{2}^{k}-u_{3}^{k}\right]
\end{array}\right.
$$

－On the other hand，for $i=1,2$ ，we have

$$
\left\{\begin{array}{l}
\partial_{t}\left(u_{i}^{k}+u_{3}^{k}\right)-\Delta\left[A_{1}^{k}\left(u_{i}^{k}+u_{3}^{k}\right)\right]=0 \\
0<\min \left\{d_{i}, d_{3}\right\} \leq A_{i}^{k}:=\frac{u_{i}^{k}+u_{3}^{k}}{d_{i} u_{i}^{k}+d_{3} u_{3}^{k}} \leq \max \left\{d_{i}, d_{3}\right\}<+\infty
\end{array}\right.
$$

－It follows that $u_{i}^{k}+u_{3}^{k}$ are bounded in $L^{2}\left(Q_{T}\right)$ for $i=1,2$ ．

Case of different diffusions $d_{1} \neq d_{2} \neq d_{3}$

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}^{k}-d_{1} \Delta u_{1}^{k}=-k\left[u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right] \\
\partial_{t} u_{2}^{k}-d_{2} \Delta u_{2}^{k}=-k\left[u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right] \\
\partial_{t} u_{3}^{k}-d_{3} \Delta u_{3}^{k}=k\left[u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right]
\end{array}\right.
$$

- On the other hand, for $i=1,2$, we have

$$
\left\{\begin{array}{l}
\partial_{t}\left(u_{i}^{k}+u_{3}^{k}\right)-\Delta\left[A_{1}^{k}\left(u_{i}^{k}+u_{3}^{k}\right)\right]=0 \\
0<\min \left\{d_{i}, d_{3}\right\} \leq A_{i}^{k}:=\frac{u_{i}^{k}+u_{3}^{k}}{d_{i} u_{i}^{k}+d_{3} u_{3}^{k}} \leq \max \left\{d_{i}, d_{3}\right\}<+\infty
\end{array}\right.
$$

- It follows that $u_{i}^{k}+u_{3}^{k}$ are bounded in $L^{2}\left(Q_{T}\right)$ for $i=1,2$.
- If we knew that they converge pointwise, then we would deduce that they are compact in $L^{2}\left(Q_{T}\right)$ (previous result above).

Case of different diffusions $d_{1} \neq d_{2} \neq d_{3}$

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}^{k}-d_{1} \Delta u_{1}^{k}=-k\left[u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right] \\
\partial_{t} u_{2}^{k}-d_{2} \Delta u_{2}^{k}=-k\left[u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right] \\
\partial_{t} u_{3}^{k}-d_{3} \Delta u_{3}^{k}=k\left[u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right]
\end{array}\right.
$$

- On the other hand, for $i=1,2$, we have

$$
\left\{\begin{array}{l}
\partial_{t}\left(u_{i}^{k}+u_{3}^{k}\right)-\Delta\left[A_{1}^{k}\left(u_{i}^{k}+u_{3}^{k}\right)\right]=0 \\
0<\min \left\{d_{i}, d_{3}\right\} \leq A_{i}^{k}:=\frac{u_{i}^{k}+u_{3}^{k}}{d_{i} u_{i}^{k}+d_{3} u_{3}^{k}} \leq \max \left\{d_{i}, d_{3}\right\}<+\infty
\end{array}\right.
$$

- It follows that $u_{i}^{k}+u_{3}^{k}$ are bounded in $L^{2}\left(Q_{T}\right)$ for $i=1,2$.
- If we knew that they converge pointwise, then we would deduce that they are compact in $L^{2}\left(Q_{T}\right)$ (previous result above).
- Even not enough to conclude! Need to know that, separately, the u_{i}^{k} are compact in $L^{2}\left(Q_{T}\right)$. Convergence a.e. of each of them would be enough (by dominated convergence).
- The missing information will be given by the entropy inequality

The entropy inequality (we drop the k)

$$
\left\{\begin{array}{c}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-k\left[u_{1} u_{2}-u_{3}\right] \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=-k\left[u_{1} u_{2}-u_{3}\right] \\
\partial_{t} u_{3}-d_{3} \Delta u_{3}=k\left[u_{1} u_{2}-u_{3}\right]
\end{array}\right.
$$

We set $\theta_{i}=u_{i} \log u_{i}-u_{i}$ and write the equation in θ_{i}

$$
\begin{gathered}
\partial_{t} \theta_{i}=\log u_{i} \partial_{t} u_{i} ;-\Delta \theta_{i}+\frac{\left|\nabla u_{i}\right|^{2}}{u_{i}}=-\log u_{i} \Delta u_{i} \\
\partial_{t} \theta_{1}-d_{1} \Delta \theta_{1}+\frac{d_{1}\left|\nabla u_{1}\right|^{2}}{u_{1}}=-k\left[u_{1} u_{2}-u_{3}\right] \log u_{1} \\
\sum_{i}\left(\partial_{t}-d_{i} \Delta\right) \theta_{i}+\frac{d_{i}\left|\nabla u_{i}\right|^{2}}{u_{i}}=-k\left[u_{1} u_{2}-u_{3}\right]\left[\log \left(u_{1} u_{2}\right)-\log u_{3}\right] \leq 0
\end{gathered}
$$

- Integrating leads to the bound

$$
\int_{Q_{T}} \sum_{i} \frac{d_{i}\left|\nabla u_{i}\right|^{2}}{u_{i}}+k\left[u_{1} u_{2}-u_{3}\right]\left[\log \frac{u_{1} u_{2}}{u_{3}}\right] \leq C(\text { independent of } k)
$$

Passing to the limit as $k \rightarrow \infty$

- Recall the estimates

$$
\begin{aligned}
& \sup _{t}\left\|u_{i}(t)\right\|_{L^{1}(\Omega)} \leq C, \forall T>0,\left\|u_{i}\right\|_{L^{2}\left(Q_{T}\right)} \leq C \\
& \int_{Q_{T}} \sum_{i} \frac{d_{i}\left|\nabla u_{i}\right|^{2}}{u_{i}}+k\left[u_{1} u_{2}-u_{3}\right]\left[\log \frac{u_{1} u_{2}}{u_{3}}\right] \leq C
\end{aligned}
$$

The last implies that each $\nabla \sqrt{u_{i}}$ is bounded in $L^{2}\left(Q_{T}\right)$.

Passing to the limit as $k \rightarrow \infty$

- Recall the estimates

$$
\begin{aligned}
& \sup _{t}\left\|u_{i}(t)\right\|_{L^{1}(\Omega)} \leq C, \forall T>0,\left\|u_{i}\right\|_{L^{2}\left(Q_{T}\right)} \leq C \\
& \int_{Q_{T}} \sum_{i} \frac{d_{i}\left|\nabla u_{i}\right|^{2}}{u_{i}}+k\left[u_{1} u_{2}-u_{3}\right]\left[\log \frac{u_{1} u_{2}}{u_{3}}\right] \leq C
\end{aligned}
$$

The last implies that each $\nabla \sqrt{u_{i}}$ is bounded in $L^{2}\left(Q_{T}\right)$.

- Next, we use for $i=1,2$ the identity

$$
\partial_{t}\left(u_{i}+u_{3}\right)-\Delta\left(d_{i} u_{i}+d_{3} u_{3}\right)=0
$$

to show that $\partial_{t} \sqrt{u_{i}+u_{3}} \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)+L^{1}\left(Q_{T}\right)$
By Aubin-Simon type of compactness, we deduce that $u_{i}+u_{3}$ is compact in $L^{1}\left(Q_{T}\right)$ and therefore converges a.e. ...which implies they converge in $L^{2}\left(Q_{T}\right)$ thanks to our previous analysis.

Passing to the limit as $k \rightarrow \infty$

- Recall the estimates

$$
\begin{aligned}
& \sup _{t}\left\|u_{i}(t)\right\|_{L^{1}(\Omega)} \leq C, \forall T>0,\left\|u_{i}\right\|_{L^{2}\left(Q_{T}\right)} \leq C \\
& \int_{Q_{T}} \sum_{i} \frac{d_{i}\left|\nabla u_{i}\right|^{2}}{u_{i}}+k\left[u_{1} u_{2}-u_{3}\right]\left[\log \frac{u_{1} u_{2}}{u_{3}}\right] \leq C
\end{aligned}
$$

The last implies that each $\nabla \sqrt{u_{i}}$ is bounded in $L^{2}\left(Q_{T}\right)$.

- Next, we use for $i=1,2$ the identity

$$
\partial_{t}\left(u_{i}+u_{3}\right)-\Delta\left(d_{i} u_{i}+d_{3} u_{3}\right)=0
$$

to show that $\partial_{t} \sqrt{u_{i}+u_{3}} \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)+L^{1}\left(Q_{T}\right)$
By Aubin-Simon type of compactness, we deduce that $u_{i}+u_{3}$ is compact in $L^{1}\left(Q_{T}\right)$ and therefore converges a.e. ...which implies they converge in $L^{2}\left(Q_{T}\right)$ thanks to our previous analysis.

- We use the pointwise entropy inequality to prove that all three u_{i} converge a.e.. Whence their convergence in $L^{2}\left(Q_{T}\right)$.

A general convergence result

(D. Bothe, M.P., G. Rolland)

$$
\left\{\begin{array}{c}
\partial_{t} u_{1}^{k}-d_{1} \Delta u_{1}^{k}=-k\left[u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right] \\
\partial_{t} u_{2}^{k}-d_{2} \Delta u_{2}^{k}=-k\left[u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right] \\
\partial_{t} u_{3}^{k}-d_{3} \Delta u_{3}^{k}=k\left[u_{1}^{k} u_{2}^{k}-u_{3}^{k}\right]
\end{array}\right.
$$

Theorem. Up to a subsequence, the u_{i}^{k} converge in $L^{2}\left(Q_{T}\right), \forall T>0$ to a weak nonnegative solution of
$(\operatorname{Lim})\left\{\begin{array}{c}\partial_{t}\left(u_{1}+u_{3}\right)-\Delta\left(d_{1} u_{1}+d_{3} u_{3}\right)=0 \\ \partial_{t}\left(u_{2}+u_{3}\right)-\Delta\left(d_{2} u_{2}+d_{3} u_{3}\right)=0 \\ u_{1} u_{2}=u_{3} . \\ \left(u_{1}+u_{3}\right)(0)=u_{1}^{0}+u_{3}^{0},\left(u_{2}+u_{3}\right)(0)=u_{2}^{0}+u_{3}^{0},\end{array}\right.$

About the problem (Lim)

$(\operatorname{Lim})\left\{\begin{array}{c}\partial_{t}\left(u_{1}+u_{3}\right)-\Delta\left(d_{1} u_{1}+d_{3} u_{3}\right)=0 \\ \partial_{t}\left(u_{2}+u_{3}\right)-\Delta\left(d_{2} u_{2}+d_{3} u_{3}\right)=0 \\ u_{1} u_{2}=u_{3} . \\ \left(u_{1}+u_{3}\right)(0)=u_{1}^{0}+u_{3}^{0},\left(u_{2}+u_{3}\right)(0)=u_{2}^{0}+u_{3}^{0},\end{array}\right.$
If we set, $w_{1}:=u_{1}+u_{3}, w_{2}=u_{2}+u_{3}$, then it is equivalent to the 2×2 cross-diffusion system
$\left(\operatorname{Lim}^{\prime}\right)\left\{\begin{array}{c}\partial_{t} w_{1}-\Delta \psi_{1}\left(w_{1}, w_{2}\right)=0 \\ \partial_{t} w_{2}-\Delta \psi_{2}\left(w_{1}, w_{2}\right)=0 \\ w_{1}(0)=u_{1}^{0}+u_{3}^{0}, w_{2}(0)=u_{2}^{0}+u_{3}^{0},\end{array}\right.$
where $\psi=\left(\psi_{1}, \psi_{2}\right):\left[0, \infty\left[^{2} \rightarrow \boldsymbol{R}^{2}\right.\right.$ is \boldsymbol{C}^{∞} and the Jacobian matrix $D \psi\left(w_{1}, w_{2}\right)$ satisfies the spectral conditions for this problem to have unique local classical solution (see H. Amann's theory).

Open problems

As a by-product of the existence of the limit on $[0, \infty)$ of the k-systems, we obtain existence of a global weak solution, but (1) Does it coincide with the (a priori local) classical solution? We can prove uniqueness of global weak solutions for some range of the diffusions $\left[\left(d_{1}-d_{3}\right)^{2}\left(d_{2}-d_{3}\right)^{2}<16 d_{1} d_{2} d_{3}^{2}\right]$. In this case, the answer is yes, but
(2) It may a priori happen that the strong solution becomes (only) weak after some time.
(3) Does one have uniqueness of weak solutions for all values of the d_{i} 's?

Applications of the L^{2}-compactness to some "relaxed"

 cross-diffusion systems: (3)Classical conservative cross-diffusion systems may be written

$$
\left\{\begin{array}{l}
\partial_{t} u_{i}-\Delta\left[a_{i}(u) u_{i}\right]=0, i=1, \ldots, m \\
\partial_{\nu}\left(a_{i}(u) u_{i}\right)=0, u_{i}(0)=u_{i}^{0} \geq 0
\end{array}\right.
$$

where, for instance,

$$
a_{i}(u)=d_{i}+\sum_{j} d_{i j} u_{j}^{p}
$$

[N. Shigesada, K. Kawasaki and E. Teramoto]. Local existence of strong solutions by Amann's theory, but not much about global existence except for $p=1$ (see results and survey by A. Jüngel).

Interaction between species through motion, not through reaction $\rightarrow \rightarrow$ Formation of "patterns like in Turing's instabilities"

Applications of the L^{2}-compactness to some "relaxed" cross-diffusion systems: (3)

- Existence of solutions to the cross-diffusion system where $a_{i}:(0, \infty)^{m} \rightarrow[\underline{d}, \infty)$ continuous (only), $\underline{d}>0$:

$$
\left\{\begin{array}{l}
\partial_{t} u_{i}-\Delta\left[a_{i}(\tilde{u}) u_{i}\right]=0, \quad i=1, \ldots, l \\
\tilde{u}_{i}-\delta_{i} \Delta \tilde{u}_{i}=u_{i}, \quad \delta_{i}>0 \\
\partial_{\nu} u_{i}=\partial_{\nu} \tilde{u}_{i}=0, u_{i}(0)=u_{i}^{0} \geq 0
\end{array}\right.
$$

Model proposed by M. Bendahmane, Th. Lepoutre, A. Marrocco, B. Perthame (partial results in dimensions $N=1,2$).

Applications of the L^{2}-compactness to some "relaxed"

 cross-diffusion systems: (3)- Existence of solutions to the cross-diffusion system where $a_{i}:(0, \infty)^{m} \rightarrow[\underline{d}, \infty)$ continuous (only), $\underline{d}>0$:

$$
\left\{\begin{array}{l}
\partial_{t} u_{i}-\Delta\left[a_{i}(\tilde{u}) u_{i}\right]=0, i=1, \ldots, l \\
\tilde{u}_{i}-\delta_{i} \Delta \tilde{u}_{i}=u_{i}, \quad \delta_{i}>0 \\
\partial_{\nu} u_{i}=\partial_{\nu} \tilde{u}_{i}=0, u_{i}(0)=u_{i}^{0} \geq 0
\end{array}\right.
$$

Model proposed by M. Bendahmane, Th. Lepoutre, A. Marrocco, B. Perthame (partial results in dimensions $N=1,2$).

- This relaxed version takes into account that the intensity of the underlying brownian depends on the density of the whole population in a neighborhood of size δ_{i} of each point.

A general global existence result

THEOREM. (Th. Lepoutre, MP, G. Rolland, '11): Existence of global solutions satisfying for all $T>0, p<\infty$

$$
\begin{gathered}
u_{i} \in L^{p}\left(Q_{T}\right), \tilde{u}_{i} \in C^{\alpha}\left(Q_{T}\right) \cap L^{p}\left(0, T ; W^{2, p}\left(Q_{T}\right)\right), \\
u_{i}(t)-\Delta\left[\int_{0}^{t} a_{i}(\tilde{u}) u_{i}\right]=u_{i}^{0} . \\
\tilde{u}_{i}-\delta_{i} \Delta \tilde{u}_{i}=u_{i}
\end{gathered}
$$

If, moreover, a_{i} is locally Lipschitz continuous, the solution is classical, unique and

$$
\begin{gathered}
u_{i} \in L^{\infty}\left(Q_{T}\right), \partial_{t} u_{i}, \Delta\left(a_{i}(\tilde{u}) u_{i}\right) \in L_{l o c}^{p}\left((0, T] ; L^{p}(\Omega)\right) . \\
\partial_{t} u_{i}-\Delta\left(a_{i}\left(\tilde{u}_{i}\right) u_{i}\right)=0 .
\end{gathered}
$$

Step 1 of the proof：L^{2}－estimate

－We first truncate the nonlinearities $a_{i}(\cdot)$ and prove existence of a fixed point for the mapping

$$
\begin{aligned}
& \mathcal{T}: v=\left(v_{i}\right)_{1 \leq i \leq m} \rightarrow u=\left(u_{i}\right)_{1 \leq i \leq m} \in X==\Pi_{i=1}^{m} X_{i}, \\
& u_{i} \text { weak solution of } \partial_{t} u_{i}-\Delta\left(a_{i}(\tilde{v}) u_{i}\right)=0, u_{i}(0)=u_{i}^{0} \\
& X_{i}=\left\{v_{i} \in L^{2}\left(Q_{T}\right) ; \partial_{t} \tilde{v}_{i} \in L^{2}\left(Q_{T}\right), \tilde{v}_{i}=\left(I-\delta_{i} \Delta\right)^{-1} v_{i}\right\}
\end{aligned}
$$

Step 1 of the proof: L^{2}-estimate

- We first truncate the nonlinearities $a_{i}(\cdot)$ and prove existence of a fixed point for the mapping

$$
\begin{aligned}
& \mathcal{T}: v=\left(v_{i}\right)_{1 \leq i \leq m} \rightarrow u=\left(u_{i}\right)_{1 \leq i \leq m} \in X==\Pi_{i=1}^{m} X_{i}, \\
& u_{i} \text { weak solution of } \partial_{t} u_{i}-\Delta\left(a_{i}(\tilde{v}) u_{i}\right)=0, u_{i}(0)=u_{i}^{0} \\
& X_{i}=\left\{v_{i} \in L^{2}\left(Q_{T}\right) ; \partial_{t} \tilde{v}_{i} \in L^{2}\left(Q_{T}\right), \tilde{v}_{i}=\left(I-\delta_{i} \Delta\right)^{-1} v_{i}\right\}
\end{aligned}
$$

- We use the L^{2} estimate + compactness to prove that this mapping \mathcal{T} is well-defined + satisfies the Leray-Schauder fixed-point theorem:

Step 1 of the proof: L^{2}-estimate

- We first truncate the nonlinearities $a_{i}(\cdot)$ and prove existence of a fixed point for the mapping

$$
\begin{aligned}
& \mathcal{T}: v=\left(v_{i}\right)_{1 \leq i \leq m} \rightarrow u=\left(u_{i}\right)_{1 \leq i \leq m} \in X==\Pi_{i=1}^{m} X_{i}, \\
& u_{i} \text { weak solution of } \partial_{t} u_{i}-\Delta\left(a_{i}(\tilde{v}) u_{i}\right)=0, u_{i}(0)=u_{i}^{0} \\
& X_{i}=\left\{v_{i} \in L^{2}\left(Q_{T}\right) ; \partial_{t} \tilde{v}_{i} \in L^{2}\left(Q_{T}\right), \tilde{v}_{i}=\left(I-\delta_{i} \Delta\right)^{-1} v_{i}\right\}
\end{aligned}
$$

- We use the L^{2} estimate + compactness to prove that this mapping \mathcal{T} is well-defined + satisfies the Leray-Schauder fixed-point theorem:
- First, we can solve in $L^{2}\left(Q_{T}\right)$-with estimates- the linear problem

$$
u_{i}(t)-\Delta \int_{0}^{t} A_{i} u_{i}=u_{i}^{0}, \partial_{\nu} u_{i}=0,(*)
$$

where $A_{i} \in L^{\infty}\left(Q_{T}\right), 0<\underline{a} \leq A_{i} \leq \bar{a}<\infty$. Here $A_{i}:=a_{i}(\tilde{v})$.

Step 1 of the proof: L^{2}-estimate

- We first truncate the nonlinearities $a_{i}(\cdot)$ and prove existence of a fixed point for the mapping

$$
\begin{aligned}
& \mathcal{T}: v=\left(v_{i}\right)_{1 \leq i \leq m} \rightarrow u=\left(u_{i}\right)_{1 \leq i \leq m} \in X==\Pi_{i=1}^{m} X_{i}, \\
& u_{i} \text { weak solution of } \partial_{t} u_{i}-\Delta\left(a_{i}(\tilde{v}) u_{i}\right)=0, u_{i}(0)=u_{i}^{0} \\
& X_{i}=\left\{v_{i} \in L^{2}\left(Q_{T}\right) ; \partial_{t} \tilde{v}_{i} \in L^{2}\left(Q_{T}\right), \tilde{v}_{i}=\left(I-\delta_{i} \Delta\right)^{-1} v_{i}\right\}
\end{aligned}
$$

- We use the L^{2} estimate + compactness to prove that this mapping \mathcal{T} is well-defined + satisfies the Leray-Schauder fixed-point theorem:
- First, we can solve in $L^{2}\left(Q_{T}\right)$-with estimates- the linear problem

$$
u_{i}(t)-\Delta \int_{0}^{t} A_{i} u_{i}=u_{i}^{0}, \partial_{\nu} u_{i}=0,(*)
$$

where $A_{i} \in L^{\infty}\left(Q_{T}\right), 0<\underline{a} \leq A_{i} \leq \bar{a}<\infty$. Here $A_{i}:=a_{i}(\tilde{v})$.

- Next, the L^{2} compactness together with the choice of X_{i} implies that \mathcal{T} is compact. Coupled with uniqueness of the weak solutions of $\left({ }^{*}\right)$, it follows that \mathcal{T} is continuous.

Step 2 of the proof: $\tilde{u} \in L^{\infty}$!

$$
u_{i}(t)-\Delta \int_{0}^{t} a_{i}(\tilde{u}) u_{i}=u_{i}^{0}, \tilde{u}_{i}(t)-\delta_{i} \Delta \tilde{u}_{i}(t)=u_{i}(t)
$$

may be rewritten

$$
\tilde{u}_{i}(t)-\Delta\left[\delta_{i} \tilde{u}_{i}+\int_{0}^{t} a_{i}(\tilde{u}) u_{i}\right]=u_{i}^{0}
$$

Step 2 of the proof: $\tilde{u} \in L^{\infty}$!

$$
u_{i}(t)-\Delta \int_{0}^{t} a_{i}(\tilde{u}) u_{i}=u_{i}^{0}, \tilde{u}_{i}(t)-\delta_{i} \Delta \tilde{u}_{i}(t)=u_{i}(t)
$$

may be rewritten

$$
\tilde{u}_{i}(t)-\Delta\left[\delta_{i} \tilde{u}_{i}+\int_{0}^{t} a_{i}(\tilde{u}) u_{i}\right]=u_{i}^{0}
$$

- Since $\tilde{u}_{i} \geq 0$, and thanks to Neumann bdy conditions:

$$
\left\|\delta_{i} \tilde{u}_{i}+\int_{0}^{t} a_{i}(\tilde{u}) u_{i}\right\|_{L^{\infty}(\Omega)} \leq C\left[\left\|u_{i}^{0}\right\|_{L \infty(\Omega)}+\int_{\Omega}\left\{\delta_{i} \tilde{u}_{i}+\int_{0}^{t} a_{i}(\tilde{u}) u_{i}\right\}\right] .
$$

Step 2 of the proof: $\tilde{u} \in L^{\infty}$!

$$
u_{i}(t)-\Delta \int_{0}^{t} a_{i}(\tilde{u}) u_{i}=u_{i}^{0}, \tilde{u}_{i}(t)-\delta_{i} \Delta \tilde{u}_{i}(t)=u_{i}(t)
$$

may be rewritten

$$
\tilde{u}_{i}(t)-\Delta\left[\delta_{i} \tilde{u}_{i}+\int_{0}^{t} a_{i}(\tilde{u}) u_{i}\right]=u_{i}^{0}
$$

- Since $\tilde{u}_{i} \geq 0$, and thanks to Neumann bdy conditions:

$$
\left\|\delta_{i} \tilde{u}_{i}+\int_{0}^{t} a_{i}(\tilde{u}) u_{i}\right\|_{L \infty(\Omega)} \leq C\left[\left\|u_{i}^{0}\right\|_{L \infty(\Omega)}+\int_{\Omega}\left\{\delta_{i} \tilde{u}_{i}+\int_{0}^{t} a_{i}(\tilde{u}) u_{i}\right\}\right] .
$$

- We may bound $\int_{Q_{T}} a_{i}(\tilde{u}) u_{i}$ independently of the upper bound of a_{i} (main point!)

Step 2 of the proof: $\tilde{u} \in L^{\infty}$!

$$
u_{i}(t)-\Delta \int_{0}^{t} a_{i}(\tilde{u}) u_{i}=u_{i}^{0}, \tilde{u}_{i}(t)-\delta_{i} \Delta \tilde{u}_{i}(t)=u_{i}(t)
$$

may be rewritten

$$
\tilde{u}_{i}(t)-\Delta\left[\delta_{i} \tilde{u}_{i}+\int_{0}^{t} a_{i}(\tilde{u}) u_{i}\right]=u_{i}^{0}
$$

- Since $\tilde{u}_{i} \geq 0$, and thanks to Neumann bdy conditions:

$$
\left\|\delta_{i} \tilde{u}_{i}+\int_{0}^{t} a_{i}(\tilde{u}) u_{i}\right\|_{L \infty(\Omega)} \leq C\left[\left\|u_{i}^{0}\right\|_{L \infty(\Omega)}+\int_{\Omega}\left\{\delta_{i} \tilde{u}_{i}+\int_{0}^{t} a_{i}(\tilde{u}) u_{i}\right\}\right] .
$$

- We may bound $\int_{Q_{T}} a_{i}(\tilde{u}) u_{i}$ independently of the upper bound of a_{i} (main point!)
- It follows $\left\|\tilde{u}_{i}\right\|_{L^{\infty}\left(Q_{T}\right)} \leq C$. Thus, we get rid of the truncation of a_{i}.

Step 3: Use of Krylov-Safonov estimates

- We apply the C^{α} estimates of Krylov-Safonov to $U_{i}=\int_{0}^{t} a_{i}(\tilde{u}) u_{i}$ which satisfies

$$
\partial_{t} U_{i}-a_{i}(\tilde{u}) \Delta U_{i}=a_{i}(\tilde{u}) u_{i}^{0} \in L^{\infty}\left(Q_{T}\right),
$$

where now $\underline{a} \leq a_{i}(\tilde{u}) \leq \bar{a}(T)<+\infty$.

$$
\Rightarrow\left\|U_{i}\right\|_{C^{\alpha}\left(Q_{T}\right)} \leq C \text { for some } \alpha \in(0,1)
$$

Step 3: Use of Krylov-Safonov estimates

- We apply the C^{α} estimates of Krylov-Safonov to $U_{i}=\int_{0}^{t} a_{i}(\tilde{u}) u_{i}$ which satisfies

$$
\partial_{t} U_{i}-a_{i}(\tilde{u}) \Delta U_{i}=a_{i}(\tilde{u}) u_{i}^{0} \in L^{\infty}\left(Q_{T}\right),
$$

where now $\underline{a} \leq a_{i}(\tilde{u}) \leq \bar{a}(T)<+\infty$.

$$
\Rightarrow\left\|U_{i}\right\|_{C^{\alpha}\left(Q_{T}\right)} \leq C \text { for some } \alpha \in(0,1)
$$

- Recall that, for $w_{i}:=\delta_{i} \tilde{u}_{i}+\int_{0}^{t} a_{i}(\tilde{u}) u_{i}=\delta_{i} \tilde{u}_{i}+U_{i}$,

$$
\begin{gathered}
-\Delta w_{i}=u_{i}^{0}-\tilde{u}_{i} \in L^{\infty}\left(Q_{T}\right) \Rightarrow \nabla w_{i} \in L^{\infty}\left(Q_{T}\right) \\
\partial_{t} w_{i}-\delta_{i} \Delta\left(\partial_{t} w_{i}\right)=a_{i}(\tilde{u}) u_{i} \leq C(T) u_{i} \\
\Rightarrow 0 \leq \partial_{t} w_{i} \leq C_{1}(T) \tilde{u}_{i} \Rightarrow \partial_{t} w_{i} \in L^{\infty}\left(Q_{T}\right)
\end{gathered}
$$

Step 3: Use of Krylov-Safonov estimates

- We apply the C^{α} estimates of Krylov-Safonov to $U_{i}=\int_{0}^{t} a_{i}(\tilde{u}) u_{i}$ which satisfies

$$
\partial_{t} U_{i}-a_{i}(\tilde{u}) \Delta U_{i}=a_{i}(\tilde{u}) u_{i}^{0} \in L^{\infty}\left(Q_{T}\right),
$$

where now $\underline{a} \leq a_{i}(\tilde{u}) \leq \bar{a}(T)<+\infty$.

$$
\Rightarrow\left\|U_{i}\right\|_{C^{\alpha}\left(Q_{T}\right)} \leq C \text { for some } \alpha \in(0,1)
$$

- Recall that, for $w_{i}:=\delta_{i} \tilde{u}_{i}+\int_{0}^{t} a_{i}(\tilde{u}) u_{i}=\delta_{i} \tilde{u}_{i}+U_{i}$,

$$
\begin{gathered}
-\Delta w_{i}=u_{i}^{0}-\tilde{u}_{i} \in L^{\infty}\left(Q_{T}\right) \Rightarrow \nabla w_{i} \in L^{\infty}\left(Q_{T}\right) \\
\partial_{t} w_{i}-\delta_{i} \Delta\left(\partial_{t} w_{i}\right)=a_{i}(\tilde{u}) u_{i} \leq C(T) u_{i} \\
\Rightarrow 0 \leq \partial_{t} w_{i} \leq C_{1}(T) \tilde{u}_{i} \Rightarrow \partial_{t} w_{i} \in L^{\infty}\left(Q_{T}\right)
\end{gathered}
$$

- $\Rightarrow w_{i}$ is Lipschitz-continuous

$$
\Rightarrow\left\|\delta_{i} \tilde{u}_{i}\right\|_{C^{\alpha}\left(Q_{T}\right)} \leq C
$$

Step 4: Use the maximal L^{p}-regularity theory

- Recall that for $U_{i}(t)=\int_{0}^{t} a_{i}(\tilde{u}) u_{i}$

$$
\partial_{t} U_{i}-a_{i}(\tilde{u}) \Delta U_{i}=a_{i}(\tilde{u}) u_{i}^{0} \in L^{\infty}\left(Q_{T}\right),
$$

Now, we know that $a_{i}(\tilde{u})$ is continuous on Q_{T} and bounded from below. Therefore, we have L^{P}-maximal regularity. In particular,

$$
\begin{gathered}
\partial_{t} U_{i}=a_{i}(\tilde{u}) u_{i} \in L^{p}\left(Q_{T}\right) \text { for all } p<+\infty . \\
\Rightarrow u_{i} \in L^{p}\left(Q_{T}\right)
\end{gathered}
$$

Step 4: Use the maximal L^{p}-regularity theory

- Recall that for $U_{i}(t)=\int_{0}^{t} a_{i}(\tilde{u}) u_{i}$

$$
\partial_{t} U_{i}-a_{i}(\tilde{u}) \Delta U_{i}=a_{i}(\tilde{u}) u_{i}^{0} \in L^{\infty}\left(Q_{T}\right),
$$

Now, we know that $a_{i}(\tilde{u})$ is continuous on \bar{Q}_{T} and bounded from below. Therefore, we have L^{P}-maximal regularity. In particular,

$$
\begin{gathered}
\partial_{t} U_{i}=a_{i}(\tilde{u}) u_{i} \in L^{p}\left(Q_{T}\right) \text { for all } p<+\infty . \\
\Rightarrow u_{i} \in L^{p}\left(Q_{T}\right)
\end{gathered}
$$

- And we get more if a_{i} is locally Lipschitz :

$$
\partial_{t} u_{i}, \Delta\left(a_{i}(\tilde{u}) u_{i}\right) \in L_{l o c}^{p}\left((0, T] ; L^{p}(\Omega)\right), \forall p<\infty .
$$

Again the L^{2}-approach for uniqueness!

Let u, v be two solutions, $a_{i}=a_{i}(\tilde{u}), b_{i}=a_{i}(\tilde{v})$.

$$
\partial_{t}\left(u_{i}-v_{i}\right)-\Delta\left[a_{i}\left(u_{i}-v_{i}\right)+v_{i}\left(a_{i}-b_{i}\right)\right]=0 .
$$

This may be rewritten with $U_{i}=u_{i}-v_{i}, \tilde{U}=\tilde{u}-\tilde{v}$

$$
\begin{gathered}
\partial_{t} U_{i}-\Delta\left[a_{i} U_{i}+v_{i} A_{i} \cdot \tilde{U}\right]=0, i=1, \ldots, m, \\
A_{i}=\int_{0}^{1} D a_{i}(t \tilde{u}+(1-t) \tilde{v}) d t \in L^{\infty}\left(Q_{T}\right) .
\end{gathered}
$$

Proving $U \equiv 0$ is equivalent to solving the dual problem for any $F \in C_{0}^{\infty}\left(Q_{T}\right)^{m}$ (here $\left.B_{i j}=v_{j} A_{j i}\right)$:

$$
\left\{\begin{array}{l}
\psi_{i}, \partial_{t} \psi_{i}, \Delta \psi_{i} \in L^{2}\left(Q_{T}\right) \tag{3}\\
\partial_{t} \psi_{i}+a_{i} \Delta \psi_{i}+\left(I-\delta_{i} \Delta\right)^{-1}\left(B_{i} \cdot \Delta \psi\right)=F_{i} \\
\psi=\left(\psi_{1}, \ldots, \psi_{m}\right), \partial_{\nu} \psi_{i}=0, \psi_{i}(T)=0 .
\end{array}\right.
$$

