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Goals of the talk:

» (1) To understand global existence in time for
reaction-diffusion systems which have two main properties:
- positivity of the solutions is preserved
- the total mass of the solution is controlled
(= L' a priori estimate uniform in time)

» This will exploit these L! estimates, but will also rely on
LP and L? estimates

» (2) To apply the same [2-estimates to the description of
fast-reaction limits in some chemical systems and to
existence questions for some cross-diffusion systems.



An easy O.D.E.

u=—uv?

vVi= uv?
u(0) = up >0, v(0)=v >0,

Up, Vo given in [0, 00),

where u, v : [0, T) — R are the unknown functions. Here 5 > 1.
Local existence of a nonnegative unique solution on a maximal
interval [0, T*) is well-known due to the C!-property of

(u,v) — uv®. Moreover u > 0,v > 0 and

(u+v)(t) =0= (u+ v)(t) = up + v,

so that:  supycpo, 7+ |u(t)] + [v(t)| < +o0,

and therefore

T =400



What happens when diffusion is added?

Ot — diAu=—uv? in Qr = (0, T) x Q
Orv —dbAv = wPinQr=(0,T)xQ
dyu=0,v=00nX1 =(0,T) x 09,
u(0) =uo >0, v(0)=vo >0.

Here Q C RN, regular. The total mass is preserved:

/Qf)t(u—kv)—/QA(dlu%—dgv):O.

81,(d1u—|— d2V) =00nd) = / A(d1u+ d2V) =0.
Q

/Q(u+v)(t)/9uo+v0

Insufficient for global existence!



Local existence for reaction-diffusion systems with L*>°-data

Ou— diAu= —uv? on Qr
(S) v — dhAv = uv® on Qr

Oyu=09,v=0o0nZXT,

u(0) =up >0, v(0)=wv >0.

» Theorem (L*-approach): Let up, vp € L*=(R),
ug > 0,vg > 0. Then, there exist a maximum time T* > 0
and (u, v) unique classical nonnegative solution of (S) on
[0, T*[. Moreover,

up_ {lu(®)lle(@) + V(D)) } < +00 = [T+ oq].
te
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Local existence for reaction-diffusion systems with L*>°-data

Ou— diAu= —uv? on Qr
(S) v — dhAv = uv® on Qr

Oyu=09,v=0o0nZXT,

u(0) =up >0, v(0)=wv >0.

» Theorem (L*-approach): Let up, vp € L*=(R),
ug > 0,vg > 0. Then, there exist a maximum time T* > 0
and (u, v) unique classical nonnegative solution of (S) on
[0, T*[. Moreover,

sup {H )l o) + IV(E) || () } < +00 = [T* + o] .
tel[0, T
» By maximum principle: [[u(t)| Q) < [|tol/i>(q)- But, what

about v(t)?
» If dy = do: 9(u+v) — diA(u+v) =0,

= [lu(t) + v(t)ll o) < lluo + voll Lo (0);
= T"=+400!



Local existence for reaction-diffusion systems with L*>°-data

8u— diAu= —uvP on Qr
(s) v — doAv = uv? on Qr

Oyu=09,v=0o0nZXT,

u(0) =up >0, v(0)=v, >0.

What if d; # d» ?

Remark: here [o(u+ v)(t) = [, o + vo, that is

?UP {Ilu(®)l 2, V(D)2 } < Mol 2y + voll 2 (e
te[0

How does this estimate help for global existence? Very frequent
situation in applications !



Same question for the general family of systems:

Vi=1,...m
O.uj — diAuj = fi(u1, uo, ..., Um) in Qr
8Vu,- =0

onxr
u;(0,-) = uP(-) > 0.

d; >0, f:[0,00)™ = R of class C! where

» (P): Positivity (nonnegativity) is preserved
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Same question for the general family of systems:

Vi=1,...m
O.uj — diAuj = fi(u1, uo, ..., Um) in Qr
oyui =0 onxr

ui(0,) = uP() > 0.

d; >0, f:[0,00)™ = R of class C! where
» (P): Positivity (nonnegativity) is preserved
» (M): >, ..., fi <0 ormore generally
> (M") Vr e [0,00[, > i jcpaifi(r) < C[L+ >0, 0,1
for some a; > 0



Vi=1,...m
(E) o,ui — dilAu; = f;‘(Uh uz, ..., Um) in Qr
Ovu; =0 onkr

ui(0,) = uf () > 0.

» (P) Preservation of Positivity (quasipositivity): Vi =1, ...,
Vr = (rl,.. rm) < [0 OO[ (rl, ceey r,-_1,0,r,-+1, .. rm) Z O

r




Vi=1,..m
O,ui — diAu; = fi(uy, uz, ..., Um) in Qr
Opui =0 onXr

ui(0,-) = u?(-) > 0.
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Mass’:
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Q
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Add up, integrate on £, use fQ Au; = fBQ O,ui = 0:

/Qat[z ui(t)]dx = /QZ fi(u)dx < 0.
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Vi=1,...m
O,ui — diAu; = fi(uy, uz, ..., Um) in Qr
Opui =0 onXr

ui(0,-) = uf(-) > 0.
» (P) Preservation of Positivity Vi =1,...,m

Vr e [O —|—OO[ (rl, ey 11,0, rig1, ...,rm) > 0.

> (M): 21<,<m i(r1y ..., rm) < 0 = "Control of the Total
Mass’:

Vvt >0, Zu,txdx</
Q

Qq<i<r 1<i<r

Add up, integrate on £, use fﬂ Au; = fOQ O,ui = 0:
/ 0> ui(t)]dx = / > fi(u)dx < 0.
Q [l

» = LY(Q)- a priori estimates, uniform in time (t € [0, T*)).
» Remark: same with (M’)



QUESTION:
What about Global Existence of solutions

under assumption (P)+(M)?7?
or more generally (P)+ (M’) 77

Remarks: Global existence holds for the associated ODE.
Global existence holds for the full system if all the d; are equal

since then, by maximum principle

1225 ui(t)llo @) < 1 225 ui(0) |l ()



Explicit examples with property (P)4(M) or (M’)

” Chemical morphogenetic process (" Brusselator”, R.
Lefever-1. Prigogine-G. Nicolis)

Ou — diAu= —uv?>+bv

Ov —doAv =uv?— (b+1)v+a
Uyo = b/a, Vs = a,

a,b,dy,dr > 0.



Explicit examples with property (P)+(M’)

» " Chemical morphogenetic process (" Brusselator”, R.
Lefever-l. Prigogine-G. Nicolis)
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See also: Glycolosis model-Gray-Scott models



Explicit examples with property (P)+(M’)

» " Chemical morphogenetic process (" Brusselator”, R.
Lefever-l. Prigogine-G. Nicolis)

Oy — diAu= —uv? + bv
Ov —doAv = uv? — (b+1)v+a
See also: Glycolosis model-Gray-Scott models

» Exothermic combustion in a gas

8:Y — pAY = —H(Y, T)
8: T —MAT = qH(Y.T),

Y = concentration of a reactant, T = temperature,



Explicit examples with (P)+(M’)
» Lotka-Volterra Systems

Vi=1..m, Oiu; — diAu; = eju; + u; Z pijuj,

1<j<m

with e, pj € R such that for some a; > 0.

Yw € [0,00)7, Y awipyw; <0, [= (M)].
ij=1



Explicit examples with (P)+(M’)
» Lotka-Volterra Systems
Vi=1..m, Oiu; — diAu; = eju; + u; Z pijuj,
1<j<m

with e, pj € R such that for some a; > 0.

Yw € [0,00)7, Y awipyw; <0, [= (M)].
ij=1

» Diffusive epidemic models: SIR
S=Susceptibles= can be infected
I=Infectives=infected and transmit disease
R=Removed=immune; P=S+ [+ R

St — V- -di(x)VS =bP — (m+ kP)S — g(S5,1)
It =V - do(x)VI = —=(m+ kP)I 4+ g(S.1) — Al
Re — V- ds(x)VR = —(m+ kP)R + Al

May be coupled with an extra variable: S = 5(t, x, age)....



Elementary chemical reactions: a simple example
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U, + Up = Us
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Elementary chemical reactions: a simple example

| 4
k-l—
Ui + Us = Us

» u; = concentration of U;. Assume first u; = u;(t)
(independent of the spatial variable)

» [aw of Mass Action: In each reaction, the instantaneous
variation of concentration of each u; is proportional to the
concentration of the reactants:

d

— =k us — ktTuu
pr 3 1u2



Elementary chemical reactions: a simple example

>

k-l—
Ui + Us = Us
» u; = concentration of U;. Assume first u; = u;(t)
(independent of the spatial variable)
» [aw of Mass Action: In each reaction, the instantaneous
variation of concentration of each u; is proportional to the
concentration of the reactants:

d
Eul =k uz — k+U1U2
» Whence the full system of O.D.E.:
d

gul =k u3 — k+U1U2
gl = k~us — k+U1U2
g3 = —k"uz+ k+u1u2.



Elementary chemical reactions: a simple example

k+

Ui + U ki_ Us



Elementary chemical reactions: a simple example
>
e+
U+ U, = U
1 2 1= U3

» u; = u;(t,x) = concentration of U;, x¢c Qc RV



Elementary chemical reactions: a simple example

| 2
k-l—
U + U, kﬁ_ Us
» u; = uj(t, x) = concentration of U;, x <€ Qc RN
» Instantaneous variation of u; : d;u; + V - (u;V;)
where V; =velocity of the particule U;
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Elementary chemical reactions: a simple example

| 2
k-l—
U + U, kﬁ_ Us

» u; = uj(t, x) = concentration of U;, x <€ Qc RN
» Instantaneous variation of u; : d;u; + V - (u;V;)

where V; =velocity of the particule U;
» Law of Mass Action: it is proportional to the concentration of

the reactants:

Oruy +V - (u1V1) = k™ uz — kT uyup

» Fick's diffusion law:

wnVi=—-diVu; = V- (U1V1) = —diAup

Ortp — diAuy = —k+U1U2 + k™ us3
Oty — dpAup = —k+U1U2 + k™ us3
Oruz — d3sAuz = k+U1U2 — k™ u3

Note :fi + o + 2f3 = 0 and positivity is preserved.



A quadratic model

Pt
U, + Up i Us + U,

Oiup — diAup = —kJrLIle + k" uzuy
Oty — dhAup = —k+U1U2 + k™ u3uy
Oiuz — d3Auz = k+U1U2 — k™ uzuy
Oruy — daAuy = k+U1U2 — k™ U3y

Note: f; + f, + f3 + 4 = 0 and positivity is
preserved.



Superquadratic reaction-diffusion systems.

» A general chemical reaction:
k+

prUs + poUz + ... + pmUn = gl + @l + ...+ gnUn,

pi, gi =nonnegative integers.
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Superquadratic reaction-diffusion systems.

» A general chemical reaction:

+

prUs + poUz + ... + pmUn = gl + @l + ...+ gnUn,

pi, gi =nonnegative integers.

Orui—d;Auj = (pi—q;) (k—njn;lujf — k+nj";1uff) Yi=1..m.

» Here Y. mip; = >, mjq; for some m; € (0,00),i = 1...m.
This implies (M*): >-7, m; f; = 0.



Superquadratic reaction-diffusion systems.

v

A general chemical reaction:

_l’_

prUs + poUz + ... + pmUn = gl + @l + ...+ gnUn,

pi, gi =nonnegative integers.

Orui—d;Auj = (pi—q;) (k—njn;lujf — k+nj";1uff) Yi=1..m.

v

Here Y. mijp; = >, m;q; for some m; € (0,00),i = 1...m.
This implies (M*): >-7, m; f; = 0.

Global existence in general 7

v



Models in electromigration (Nernst-Planck)

Orci — didiv (V¢ + zic;VP) = fi(c) in Q,
AP =" ziciin Q,
+initial and boundary conditions.

¢; = ¢i(t, x)= concentration of ionized species

with charge number z; € R

® is the electrical potential

The nonlinearity f; have the same structure (reversible chemical
reactions).

see Amann-Renardy, Gajewski-Glitzsky-Groger-Hiinlich, Choi-Lui,
Biler-Dolbeault, Hebisch-Nadzieja, Bothe-Fischer-Saal,
Bothe-Fischer-P.-Rolland, ...



Models with degenerate diffusion
» Modelization of pollutants transfer in atmospher
(N = 3): W. Fitzgibbon-M. Langlais-J. Morgan,R. Texier-Picard-
MP:
Ot¢; = d; (')gzo,- +w-Vo;+ f,(d)) + gi, Vi =1...20,
{ + Bdy and initial conditions



Models with degenerate diffusion
» Modelization of pollutants transfer in atmospher
(N = 3): W. Fitzgibbon-M. Langlais-J. Morgan,R. Texier-Picard-
MP:
Ordi = di 02,01 +w - Vi + fi(¢) + gi, Vi = 1...20,
{ + Bdy and initial conditions

P The reaction terms:

fi(¢) —kid1 + kapd19 + kosdoo + ki1 d13 + kodr1do + ksds o
kaopoda — kozp1Pa — kiad1de + kiadrod2 — kioP11é1 — koadbio P,

f(¢) ki1 + ko119 — kodr1¢2 — k3ds o — kppopa — kippr0d2

3(¢) ki1 + ki7pa + kigdie + koo db1g — kisd3

fa (o) —ki7pa + kispz — kigpa — kodbobs — kozp1a

f5(¢) 2kyp7 + k79 + k13P1a + ke d7d6 — k3ds o + koo 1706

fs () 2kigp16 — ksdode — ke 76 + kadsdo — kaod17d6 — kiad1de
—kad7 — ksp7 + kizd1a — ko7 6

ka7 + ks p7 + k1 g + ke 7 d6
—k1g — kgdg b

>
©
<

1 | s a1

fio(9) k1 g + kop1102 — kiadrod2
ki1¢13 — kod11b2 + kgdpgde — kioP1101
fi2(9) ko112
fi3(¢) —ki1613 + k1o 1101
fia(9) —k13p1a + ki2b1092
fis(¢) kia 196
fi6(9) —ki9p16 — kigdie + kiePa
fi7(9) — koo P17 %6
fig(¢) koo b17 6
fio(#) —ko1919 — kP19 + kos P20 + koz b1 da — koadigdi
f20(9) —kasp20 + koapr9 1.



Back to the model example: what about L*>-estimates?

Oy — diAu= —uvP on Qr
(S) Ov — dhAv = uvP on Qr

oyu=090,v=00nXr,

u(0) =uy >0, v(0)=vw >0.

By maximum principle

Oru — i Au < 0 = [|u(t)| () < [luolli=(q)
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Oy — diAu= —uvP on Qr

(S) Ov — dhAv = uvP on Qr
oyu=090,v=00nXr,
u(0) =up >0, v(0)=1wv >0.

By maximum principle
Oru — diAu <0 = [lu(t)| o) < lluolli=(q)
> Ifdi=db=d: O(u+v)—dA(u+v)=0
= [u(t) + v(t)|| L) < lluo + vollL=(q)

= T" = +00.



Back to the model example: what about L*>-estimates?

Oy — diAu= —uvP on Qr
(S) Ov — dhAv = uvP on Qr

oyu=090,v=00nXr,

u(0) =uy >0, v(0)=vw >0.

By maximum principle
Oru — diAu <0 = [lu(t)| o) < lluolli=(q)
> Ifdi=do=d: O(u+v)—dA(u+v)=0
= [u(t) + v(t)|| L) < lluo + vollL=(q)

= T" = 4o0.
» What happens when d; # d,?



A general LP-approach

Oru— diAu=—uv? on Qr
(S) Ov — chAv = uvP on Qr

O,u=9,v=00nXr,

u(0) = up >0, v(0)=vy>0.

Orv — dhAv = —[0ru — di1Au), v € L*°(Q1+).
FORMALLY : v = —[0; — doA] 72 (9r — dh A) u (= Au).
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= Vp < 400, [[v[lie(Qre) < +00



A general LP-approach

Oru— diAu=—uv? on Qr
(S) Byv — dbAv = uvP on Qr

O,u=9,v=00nXr,

u(0) =up >0, v(0)=wv >0.

Orv — dhAv = —[0ru — di1Au), v € L*°(Q1+).
FORMALLY : v = —[0; — doA] 72 (9r — dh A) u (= Au).
» Lemma: the operator A is continuous from LP(Q7) into
LP(Q7) for all p €]1,00[ and all T > 0.
= Vp < 400, [[v[lie(Qre) < +00
> Next

IVlloo(@rey < Clluv?|liagr.y if @ > (N +1)/2,



A general LP-approach

| 2

Oru — diAu= —uv? on Qr

(S) Byv — dbAv = uvP on Qr
O,u=9,v=00nXr,
u(0) =uy >0, v(0)=v >0.
Orv — dhAv = —[0ru — di1Au), v € L*°(Q1+).
FORMALLY : v = —[0; — doA] 72 (9r — dh A) u (= Au).
» Lemma: the operator A is continuous from LP(Q7) into
LP(Q7) for all p €]1,00[ and all T > 0.
= Vp < 400, [[v[lie(Qre) < +00

> Next

IVl (@rey < Clluv?llLagoyy if @ > (N+1)/2,
» Therefore

[v][ oo (@) < +00 and T* = +o0.



The proof of the LP-estimate by duality

>
Orv — b Av< — [Oru — diAu], v >0,
implies the existence of C = C(p, T, 2, ug, v) such that:

Vp € (1.00), [Vllir(an < CIL+ [ullision]-



The proof of the LP-estimate by duality

>
Orv — b Av< — [Oru — diAu], v >0,
implies the existence of C = C(p, T, Q, ug, vp) such that:
¥p € (1,50). IVllisar) < C[L+ [lulinon)
» Solve the dual problem

O+ deA) = O € C(Qr),© >0,
Y(T)=0, d,vv=0o0nXr.



The proof of the LP-estimate by duality

>
Orv — b Av< — [Oru — diAu], v >0,
implies the existence of C = C(p, T, 2, ug, v) such that:
vp € (1.0), IVlis@n < CIL+ ullisian)
» Solve the dual problem

— (0w + daAY) = O € C§°(Q7),© >0,
Y(T)=0, d,vv=0o0nXr.

> Multiplying the inequality in v by b > 0 leads to:
/ vO < /(Uo + V())w(O) — / ud + (dl — dg) ulA.
QT Q QT QT



The proof of the LP-estimate by duality

>
Orv — b Av< — [Oru — diAu], v >0,
implies the existence of C = C(p, T, Q, ug, vp) such that:
Vp € (L), [Vllisan < CIL+ lullisgan):
» Solve the dual problem

— (0w + daAY) = O € C§°(Q7),© >0,
Y(T)=0, d,vv=0o0nXr.

» Multiplying the inequality in v by 1) > 0 leads to:

/T vO < /Q(UO + v)¥(0) — /T u® + (dy — o) ul\p.

QT

> By the LP -maximal regularity theory
1AV (@ry + 1¥(O) (@) < ClIOI L (qr)-



The proof of the LP-estimate by duality

>
Orv — b Av< — [Oru — diAu], v >0,
implies the existence of C = C(p, T, 2, ug, v) such that:

Vp € (1.00), [Vllir(an < CIL+ [ullision]-

v

Solve the dual problem

— (0w + daAY) = O € C§°(Q7),© >0,
Y(T)=0, d,vv=0o0nXr.

v

Multiplying the inequality in v by v > 0 leads to:
/ vO < /(uo + vo)y(0) — / u© + (dy — dv) ulAi.
QT Q QT QT

By the LP -maximal regularity theory
[AY| 1 @y + 1O (@) < ClIOI L (qr)-

v

v

= ‘fQT v@‘ < C||O[(qr) = LP(Qr)-estimate on v by duality.



Extensions and limits of the LP-approach

» The same approach provides global existence
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Extensions and limits of the LP-approach

» The same approach provides global existence

- for the " Brusselator”, for the epidemic models SIR
- for the 3 x 3 system

U+ Us e Oetr — th A = —kV i + k™ us

n Oetn — dh Aty = —kVT i + k~us
= U3 :
k= Oruz — dzsAuz = k+U1U2 — k™ us

> More generally it applies to m x m systems if there exists a
triangular invertible matrix @ with nonnegative entries such
that

Vre[0,00)", Qf(r)<[1+ Y rib,

1<i<m
for some b € R™ f = (f, ..., fm)" with at most polynomial
growth.

» Can be used for general systems with only (P)4(M) when
the d; are close to each other.
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Extensions and limits of the LP-approach

» All the previous results extends to Dirichlet or Robin type
boundary conditions, assuming they are all of the same type in
all equations or when they "combine well enough”

» Blow up in finite time may occur near the boundary in the
system [Bebernes-Lacey]

Ou— diAu=—uwP in Qr
Ov — dbAv = uPin Qr
u=1 0d,v=00nXT.

» Extends to Wentzell type boundary conditions, like

Oruj — diAu; = fi(u) in Qr
o0euj + didyu; — 6iApqui = gi(u) on L1

with ¢,d; > 0 and "good g;'s. [G. Goldstein, J. Goldstein, M.
Meyries, M.P.]
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when h(v) grows faster than a polynomial.

» The case h(v) = e can be reached for this particular system
by using Orlicz spaces, rather than LP. There is also a
different method based on the use of a specific Lyapunov
function which works with systems with more specific stucture
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Barabanova, M. Kirane, S. Kouachi, S. Benachour, B.
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Extensions and limits of the LP-approach
» [P-approach is not enough for global existence in

Oru — diAu= —uh(v) in Qr
Orv — doAv = uh(v) in Qt

when h(v) grows faster than a polynomial.

» The case h(v) = e can be reached for this particular system
by using Orlicz spaces, rather than LP. There is also a
different method based on the use of a specific Lyapunov
function which works with systems with more specific stucture
{K. Masuda, J.I. Kanel, A. Haraux, A. Youkana, A.
Barabanova, M. Kirane, S. Kouachi, S. Benachour, B.
Rebiai,...}

> Still the system

Ot — diAu = —ue in Qr
Otv — doAv = ve”’ in Qr

remains open.
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Extensions and limits of the LP-approach

» [P-approach does not apply to

Oy — diAu = u3v? — ? V3 in Qt
Ov — dbAv = 2 v3 — 3v2 in Qt

» and even not to the "better” system with A € [0, 1]

O — diAu = uv? — 2 v3 in Qr,
Ov — dhAv = u? v3 — 13v2 in Qt

where f(u,v) + g(u,v) <0 and also f(u,v) + A\g(u,v) <0



Finite time L*°-blow up may appear!
>

Oru — diAu = f(u,v) in Qr,
Orv — dhAv = g(u, v) in Qr

Theorem: (D. Schmitt, MP) One can find polynomial
nonlinearities f, g satisfying (P) and

(M) f+g<0, and also : I\ € [0,1[, f + \g <0,
and for which there exists T* < 400 with

i [Ju(t) 1oy = o0 = Tim [v(6)]li=(0).



Finite time L*°-blow up may appear!
>

Oru — diAu = f(u,v) in Qr,
Orv — dhAv = g(u, v) in Qr

Theorem: (D. Schmitt, MP) One can find polynomial
nonlinearities f, g satisfying (P) and

(M) f+g<0, and also : I\ € [0,1[, f + \g <0,
and for which there exists T* < 400 with

lim[lu(8) =@y = +o0 = i [v(8)] (e
» The blow up is similar to u(t, x) = m which is
solution of d;u — Au = g(t,x)u? with g € L, N > 4. The
solution goes out of L>°(Q2) at t = T*, but still exists for
t > T*.— — — > Incomplete blow up !



Idea of the proof of the " possible blow up” Theorem

» Look for solutions of the form

~a(T* —t) + b|x|?
BT

(T —t)+ d|x|?

t =
U( 7X) [T* —t+ ‘X|2]'y ’

v(t, x)

Find a,b,c,d,d1,d>» > 0,7 > 1, N > 1 so that u, v be
solutions of a (P)+(M) system.
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Idea of the proof of the " possible blow up” Theorem

» Look for solutions of the form

~a(T* —t) + b|x|?
BT

(T —t) + d|x?
Tt PP

u(t, x) v(t, x)
Find a,b,c,d,d1,d>» > 0,7 > 1, N > 1 so that u, v be
solutions of a (P)+(M) system.

» There are examples even in dimension N = 1.

» By choosing N large enough, we can obtain blow up with
nonlinearities f(u, v), g(u, v) with growth 2 + ¢, e > 0 as small
as we want.



CONCLUSION at this stage:

Look rather for weak solutions which are allowed to
go out of L>(Q) from time to time or even often.

We ask the nonlinearities to be at least in L}( Q7).

fi(u) € LY(Q7) 7



An ['-approach

Vi=1,...m
() O.uj — diAu; = fi(uy, up, ..., um) in Qr
o,ui =0 onxr

ui(0,-) = u?(-) > 0.

» ['-Theorem. Assume the two conditions (P)+ (M’) hold.
Assume moreover that the following a priori estimate holds:

Vizl,...,m,/ If(u)| < C.
QT

Assume 1Y € L}(Q)). Then, there exists a global weak solution
for System (S).



An ['-approach

Vi=1,...m
() O.uj — diAu; = fi(uy, up, ..., um) in Qr
o,ui =0 onxr

u(0,) = u() = 0.

» ['-Theorem. Assume the two conditions (P)+ (M’) hold.
Assume moreover that the following a priori estimate holds:

Vizl,...,m,/ If(u)| < C.
QT

Assume 1Y € L}(Q)). Then, there exists a global weak solution
for System (S).

» Proof: via supersolutions and truncations techniques !
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Main ingredients in the proof of the L!-theorem

» Truncating the f; — f," ud — (u?)" — global approximate
solutions uf with [|f"(u")||1(q,) bounded independently of n

8tu —diAu! = "(uf, ..., up) on (0,00) x Q,
(S) Luf —Oon(O 00) x 09,
”(O ) =u? >0,

» Compactness of the mapping
(g, wo) € LY(Q7) x L1Y(Q) — w € L1(QT) where

orw — dAw = g on Qr, w(0,-) = wy, dyw =0 on 9N.

so that u” — u; in L}(Q7) and a.e. as n — +o0



Main ingredients in the proof of the L!-theorem

» Truncating the f; — f," ud — (u?)" — global approximate

solutions uf with [|f"(u")||1(q,) bounded independently of n
Oet! — diAu? = £ (uf, ..., ull) on (0, 00) x €,
(S) 8u—00n( ,00) X 0%,
u(0,-)=u} >0,

» Compactness of the mapping
(g, wo) € LY(Q7) x L1Y(Q) — w € L1(QT) where

orw — dAw = g on Qr, w(0,-) = wy, dyw =0 on 9N.

so that u” — u; in L}(Q7) and a.e. as n — +o0

» We first prove that the limit u; is a supersolution.



Main ingredients in the proof of the L!-theorem

» Truncating the f; — fl" ud — (u?)" — global approximate
solutions uf with [|f"(u")||1(q,) bounded independently of n

Oet! — diAu? = £ (uf, ..., ull) on (0, 00) x €,
(S) 8u—00n( ,00) X 0%,
u?(0,-)=u? >0,

i

» Compactness of the mapping
(g, wo) € LY(Q7) x LX(Q) — w € L}(QT) where

orw — dAw = g on Qr, w(0,-) = wy, dyw =0 on 9N.

so that u” — u; in L}(Q7) and a.e. as n — +o0
» We first prove that the limit u; is a supersolution.

» For this, we use the equation satisfied by
Tk (u,” + 0D s uf’) where Ty(r) = min{r, k},n > 0.
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Main ingredients in the proof of the L!-theorem

Oyuf =0 on (0,00) x 99,
UP(O, ) = U? > Oa

1

Orul — diAu? = £ (u7, ..., ull) on (0,00) x £,
(5)

sup 1" (u") |2 (ory < C(T) forall T > 0. (x)

v

If m=1: 0 Ty(uf) — it ATy (u?)> T, (uf) " (u7).
n— 400 : = 8tTk(u1) — dlATk(ul) > T,’((ul)fl(ul).

k — oo = uy is a supersolution

m>1: Let w:= Ty (u,-”—l—nz#i uf’),

v

v

v

Oew — didwf = Tr(w)fi(uf, ..., up) + RP (1, k).

v

The limit u; is a supersolution by letting successively:
n—oo, n—0, k= +oc.
Main estimate for 1) — 0O : f[uf’<k] IVuP2 < Ck

v
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> By (M):
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End of the proof of the L!-theorem

» Since u; is a supersolution, we have

Oru; — diAu; = fi(u) + p;i, 0 < p; (= nonnegative measure).

> By (M):
oY) - (z d,-u,-"> Y <o

» By Fatou's lemma

Bt(z u)—A <Z diui> < Z fi(u),

Z [fi(u) + pi] < Z fi(u) = u; =0 Vi.



['-Theorem applies to many situations

Ot — dyAu = —ue”” in Q
Orv — dbAv = ue¥’ in QT

/Qu(T)—l—/QTueVz:/Quo,

whence the L'(Q7)-estimate of the nonlinearity.
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['-Theorem applies to many situations

>

Orv — b Av = 2 v3 — u3v2 in QT

/u(T)+/ u2v3:)\/ u3v2+/ uo-

Q QT QT Q
/v(T)+/ u3v2:/ u2v3+/ Vo
Q QT Qr Q

= u3v2§/\/ u3v2+/uo+v0
QT QT Q

ForA<1l := wv? < +oo, u?vd < +o0
QT QT

» Open problem if A = 1: [l-estimate of the nonlinearity??

{ O — diAu = \uv? — v?v3 in Q,



['-Theorem applies to many situations

> More generally it applies if there exists an invertible matrix @
with nonnegative entries such that

Vre[0,00)", Qf(r)<[1+ Y rib,
1<i<m
for someb e R™ f = (f,..., ;)"
(In other words, there are m linearly independent inequalities
for the f;'s and not only one).



['-Theorem applies to many situations

> More generally it applies if there exists an invertible matrix @
with nonnegative entries such that

Vre[0,00)", Qf(r)<[1+ Y rib,

1<i<m

for someb e R™ f = (f,..., ;)"
(In other words, there are m linearly independent inequalities
for the f;'s and not only one).

» Extends partially to electro-diffusion-reaction systems.
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() 0.uj — diAuj = fi(uy, to, ..., Upy) in Qr
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[?-Theorem. Assume (P)+4(M’). Then, the following a
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A surprising a priori L?-estimate for these systems

>
Vi=1..,m

() 0.uj — diAuj = fi(uy, to, ..., Upy) in Qr

O,u; =0 onXr

ui(0,) = uf() = 0.

[?-Theorem. Assume (P)+4(M’). Then, the following a
priori estimate holds for the solutions of (S):

u? < C[l—l—Z/Q(u,Qf]..

» Corollary of the L!- and [2-Theorems: Assume (P),(M’)
and f; is at most quadratic. Then, System (S) has a global
weak solution.

Vi=1,...m VT >0, /
Qr

> Recall that nonlinearities are quadratic in many examples.
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Application to the quadratic chemical reaction:

>
kt
U+l = Us+ Uy

Orup — diAup = —k+U1U2 + kT uzuy

Oty — doAup = —k+U1U2 + kT uzuy

Orus — dz3Auz = k+U1U2 — kT uzuy

Ortis — dyAus = kT — k~usuy
» Global existence of a weak solution
» The LP-approach does not work
» This solution is regular (=classical) in dimension N = 1,2
» For N > 3, the set of points around which the solution is

unbounded is "small” in the sense that its Hausdorff
dimension is at most (N? — 4)/N

» Open problem: does the solution blow up in L>°(£2) in finite
time or not??
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Some references for the quadratic chemical reaction:

| 2
Oith — diAup = —k+U1U2 + kT usuy
Oty — doAup = —k+U1U2 + kT uzuy
Otuz — d3Aus = k+U1U2 — kT U3y
Ortis — dyAus = kT — k~usuy

» - M.P. (L'-theorem: global weak solutions);
- L. Desvillettes, K. Fellner, M.P., J. Vovelle: different proof
using entropy inequality and based on (L LogL)?-estimates on
uj.
- Strong solutions for N = 1: L. Desvillettes, K. Fellner
- Strong solutions for N < 2: J. Pruess—Th. Goudon, A.
Vasseur—J. A Caiiizo, L. Desvillettes, K. Fellner
- estimate on the size of the "blow-up set” when N > 3: Th.
Goudon, A. Vasseur

» And also, strong solutions for (rather general) strongly
subquadratic systems: J.I. Kanel-M. Caputo, A. Vasseur
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|dea of the proof of the L?-estimate

>
Ot (Zu;) —A(Zd;u;) <0.
" 5
Jdiu;
W — A(AW) <0, W:Zi:u; A= S
>

dius
OSmjnd,-SA:M<maxd,-<+oo
1 1

pui

» The operator W — 0;W — A(AW) is not of divergence form
and A is not continuous, but bounded from above and from
below so that the operator is parabolic and, at least:

IWll2er < CliWollzo)-

» We may even show that the mapping
Wo € L2(Q) — W € [2(Q7) is compact
where 0:W — A(AW) = 0, W(0) = W.



A proof of the linear [?-estimate: by duality

Introduce the dual problem

—0up — ADp = © € C(Qr)+
$(T) =0, d,0) =0 on¥r

Then, from 0;W — A(AW) <0, we deduce
| we = [ 40) Wo < [4(0)]al Wol e
QT Q
But multiplying (2) by —A gives

D + ALY = / oAy

QT QT

J, a0 == [ wvave=—3 [ agver =3 [ Ivu0r 20



[?-bound and even [2-compactness !

—0p — ADY = © € C5°(Qr)T @
Y(T)=0, O,p =0o0nXyr
We deduce, for various C = C(d,d, T):

[ @wpsc| e [ @upsc| e
QT QT QT

Qr
|+ [ 1vuoF < ¢ / ©?

/Q we = /Q Wo 4(0) < Cl[Woll 2y 1@l 2.
)

= Wiz < CliWoll2(q)-

Even better: Wy € L2(Q) — W € L?(Q7) is compact ! since
O € L2(Q1) — ¥(0) € L%(R) is compact
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Three extensions of the [2-estimate: (1)

» [t extends to nonlinear diffusions of the form
8tu,- —-V- (d,-(u,-)Vu,-) = f,-(u), d S d,' S g

» if Di(r) = [, di(s)ds, Condition (M) implies
@*Z uj) — A (Z D,-(u,-)) = Z fi <0

>_i Di(ui)
AW — A(AW) <0, W:Zu,-, A:ﬂ.

d > du A 2. Di(wi) _ > dui —q
> Ui D2 Ui i Ui
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» This L2(Q7)-estimate is replaced by a regularizing effect
from L1(Q) into L2(Q,.7), Q.7 = (7, T) X Q, namely
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Three extensions of the [2-estimate: (2): up € L}(Q))

» Recall:

OW — AAW) <0 = [[W|iz(ar) < Cl[Wol 20

» This L2(Q7)-estimate is replaced by a regularizing effect
from L1(Q) into L2(Q,.7), Q.7 = (7, T) X Q, namely

C(d,d, T)
Wil m = — T Wollue-

» This allows to solve Systems of type (P)+(M) with quadratic
reaction terms and with initial data in L*(Q) only.
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» There exists ¢(N) > 0 such that

H W||L2+€(QT) < CH W0||L2+e(Q).
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when the diffusion coefficients are close to each other,...



Three extensions of the L*-estimate (3): A third one: L[>

(by J.A. Cafiizo, L. Desvillettes, K. Fellner):
» There exists ¢(N) > 0 such that

H W||L2+€(QT) < CH WO”L2+6(Q)-

» Allows L[11¢/2_estimates on quadratic reaction-diffusion terms
— more direct approach of limit cases like when N = 2, or
when the diffusion coefficients are close to each other,...

» Allows global weak solutions for reaction terms growing faster
than quadratic (growth depending on the dimension)



Three extensions of the L*-estimate (3): A third one: L[>

(by J.A. Cafiizo, L. Desvillettes, K. Fellner):
» There exists ¢(N) > 0 such that

H W||L2+€(QT) < CH WO”L2+6(Q)-

» Allows L[11¢/2_estimates on quadratic reaction-diffusion terms
— more direct approach of limit cases like when N = 2, or
when the diffusion coefficients are close to each other,...

» Allows global weak solutions for reaction terms growing faster
than quadratic (growth depending on the dimension)

> Better results on asymptotic behaviors...
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Applications of the L?-compactness to singular limits: (1)

>

1 ko
Uy+U, = C = Us+ U,
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» The intermediate C is highly reactive, so that we may assume
that ki, ko — +o00.
What is the limit kinetics when space diffusion occurs?

» Mass Action law + Fick's diffusion law lead to the system

Orp — di1Aup = —uup + kic
Oty — dhAup = —uup + kic
Orc — deAc = ujup — (k1 + kz)C + uzuy on Qrt
Otz — d3Auz = —uzug + koc
Oty — dgAug = —uzug + koc,



Applications of the L?-compactness to singular limits: (1)

>

1 ko
Uy+U, = C = Us+ U,
k1 1

» The intermediate C is highly reactive, so that we may assume
that ki, ko — +o00.
What is the limit kinetics when space diffusion occurs?

» Mass Action law + Fick's diffusion law lead to the system

Orp — di1Aup = —uup + kic
Oty — dhAup = —uup + kic
Orc — deAc = ujup — (k1 + kz)C + uzuy on Qrt
Otz — d3Auz = —uzug + koc
Oty — dgAug = —uzug + koc,

» The LP-approach applies to this system so that global
existence of classical solutions holds!



Case of the O.D.E. system when k; + ko — +00

| 2
Orltn = —up + kic
Oty = —ulpr + kic
0iCc = Ul — (kl + kQ)C “+ Uz Uy
8tU3 = —Uuzly + sz

Oty = —usug + koc,
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so that ¢ may be eliminated in the limit system :
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so that ¢ may be eliminated in the limit system :
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Ortp = —uquo + lim k1+k2(“1”2 + uzua)
or
Orin = —auus + (1 — a)uzug

. . k
with a = limy 4 k400 IQTZIQ



Case of the O.D.E. system when k; + ko — +00

| 2
Orltn = —up + kic
Oty = —ulpr + kic
0iCc = Ul — (kl + kQ)C “+ Uz Uy
Orz = —uslig + koc
Oty = —usug + koc,

» The limit system may be obtained:

Orup = —aumuy + (1 — a)uzuy
Ortp = —auun + (1 — @) usuy
Orus = anup — (1 — @)usuy
Orug = auuy — (1 — a@)uzuy,

. . k
with o = limy, 44—+ 00 /qukz



Case of the O.D.E. system when k; + ko — +00

The reaction

1k
m+wﬁcx%%+w

'tends’ to the limit dynamics

U+ Uy, = U+ U,
11—«

+ convergence of the solutions of the corresponding systems.

Note the boundary layer at t = 0: the new initial values are
W+ ac® v+ ac® W3+ (1—a)c® W+ (1—a)c.



ki + ko — +o00 for the full system?

>

Ortn — diAur = —uun + kic
Ortp — oA = —urupr + kic
Orc — d:Ac =t — (ki + ko)c + uzua
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Orugy — daAug = —usug + kQC,



ki + ko — +o00 for the full system?

>
Ortn — diAur = —uur + kic
Orlp — oA = —urur + kic
Orc — dcAc =t — (ki + ko)c + uzua
Otz — dz3Auz = —uzug + koc
Oty — daDAuy = —usug + koc,
» Quasi-steady state approximation:
"Orc —d.Ac=0" as "ky + ko = +o0”
or |im[(k1 + /(2)C — uiup — U3U4] =0
so that ¢ — 0 and may be eliminated in the limit system :




ki + ko — +o00 for the full system?

>
Ortn — diAur = —uur + kic
Orlp — oA = —urur + kic
Orc — dcAc =t — (ki + ko)c + uzua
Otz — dz3Auz = —uzug + koc
Oty — daDAuy = —usug + koc,
» Quasi-steady state approximation:
"Orc —d.Ac=0" as "ky + ko = +o0”
or |im[(k1 + /(2)C — uiup — U3U4] =0
so that ¢ — 0 and may be eliminated in the limit system :

> Orup — diAup = —ugur + lim ﬁ(uluz + uzug)
or
Orin — diAuy = —auu + (1 — a)uzus

. . k
with a = lim 4 k400 lele
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Ortn — diAur = —uun + kic
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Orc — d:Ac =t — (ki + ko)c + uzua
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ki + ko — +o00 for the full system?

>
Ortn — diAur = —uun + kic
Ortp — oA = —urupr + kic
Orc — d:Ac =t — (ki + ko)c + uzua
Otz — dz3Auz = —uzug + koc
Oty — daDAuy = —usug + koc,

> The limit system may (formally) be obtained:
Oy — diAuy = —awus + (1 — a)usug
Oty — doAur = —vuntp + (1 — Ot)U3U4
Orus — d3Aus = auup — (1 — a)usuy
Orug — dyAuy = auytp — (1 — a)usuy,

» Again, formally the chemical reaction

1 k
Ui+l 2 C % Us + Uy

"tends” to the limit chemical reaction:

U+ Us 1% Us + U,

v



The limit system

» Theorem. The solution (uf, uX, ck uk, uf), k = (ki, ko) of
the previous system converges as k; + ko — +oo in L?(Q7)>
for all T > 0 to (u1, 2,0, u3, ug) solution of

Oy — di A = —auiup + Buzug
Oty — dh Ar = —auyup + Buzug
Oruz — d3Auz = aurup — Pusug
Otug — dyAug = aurup — Buzuy,

: k
where o = limy, 44,00 leka’B =1-oa.
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The limit system

» Theorem. The solution (uf, uX, ck uk, uf), k = (ki, ko) of
the previous system converges as k; + ko — +oo in L?(Q7)>
for all T > 0 to (u1, 2,0, u3, ug) solution of

Oy — di A = —auiup + Buzug
Oty — dh Ar = —auyup + Buzug
Oruz — d3Auz = aurup — Pusug
Otug — dyAug = aurup — Buzuy,

. k;
where o = limy, 44,00 leka’B =1-oa.
» Remark: Boundary Iayer at t = 0: the new initial values are
4+ ac ud +ac® ud+ (1—a)c, ud+ (1 - a)d.
» M. Bisi, F. Conforto, L. Desvillettes—D. Bothe, M.P.



Steps the proof of the L?-convergence

8tuf — dlAuf = —u{‘ué‘ + klck
8tu2 — d2AU2 = —u1 uk + kyck
(5«) Orck — d.Ack = uf u2 (ki + k2)c + ukuk
Optk — d3Auk = —ukuf + koc*
Opuf — dyAuf = —ukul + kock,

> Op(uf+us+2ck+uk+uf)—A(dyuf+drus+2d . ck+dsuk+dyuf) = 0,
or, setting
Wk = uk + uk +2ck + uk + uf,
oW* - A (Awk) <o,

with: mind; < AK < 2 max d;.
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Steps the proof of the L?-convergence

8tuf — dlAuf = —u{‘ué‘ + klck
8tu2 — d2AU2 = —u1 uk + kyck
(5«) Orck — d.Ack = uf u2 (ki + k2)c + ukuk
Optk — d3Auk = —ukuf + koc*
Opuf — dyAuf = —ukul + kock,

> Op(uf+us+2ck+uk+uf)—A(dyuf+drus+2d . ck+dsuk+dyuf) = 0,
or, setting
Wk = uk + uk +2ck + uk + uf,

;WK — A (Akwk) —0,

with: mind; < AK < 2 max d;.

» This implies that W is bounded in L?(Q7) (for all T),

» and so are uf,ck.



Steps of the proof of the strong L?-convergence

Oeuf — diAuf = —ulkuk + ki ck
Oruk — o Auk = —ukuf + ki c*
(Sk) Ok — d. Ak = ulfuk — (ki + ko) ek + ukuf
Opuf — d3Auk = —ukuf + koc*
Opuf — dyAuf = —ukul + kock,

» The nonlinearities ufuX, ukuf are bounded in L}(Q7),VT,

thanks to the [2-estimate
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Steps of the proof of the strong L?-convergence

atuf — dlAuf = —ufué‘ + klc"
[“)tu2 d2AU2 = —u1 uk + kyck
(Sk) Orck — d.Ack = uf u2 — (ki + k2)c + ukuk
Opuf — d3Auk = —ukuf + koc*
8tuf{ — d4Auff = —ué‘uf{ + kock,

» The nonlinearities ufuX, ukuf are bounded in L}(Q7),VT,

thanks to the [2-estimate

» Integrating the equation in c gives

/Ck(T)+/ (ki + ko)c /C +/ usul + usuf.
Q QT Qr

» All right-hand sides of the system are bounded in L}(Q7):
this implies that the sequences (uX) are compact in L1(Q7)
and ¢ — 0 in L}(Q7)...But, this is not enough to pass to the
limit !!



Steps of the proof of the strong L?-convergence

» Recall that, with Wk = 37, uk + 2ck,
Wk — A(ARWHR) =0, Wk(0) = W

where
0<d<Af<d< +c0.

wk - w .= Zu,— a.e.
i



Steps of the proof of the strong L?-convergence

» Recall that, with Wk = 37, uk + 2ck,
Wk — A(ARWHR) =0, Wk(0) = W
where
0<d<AK<d< +cx.
wk - w .= Zu,— a.e.
» But, not only this implies the L2(Q7)-estimate on W, but it
also implies the L?(Q7)-compactness of W¥.

(This is an extension of the previous compactness result to
the case when AX is moving).



Last steps of the proof of L2-convergence
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» The sequence Wk = >". uk + 2c¥ is compact in L2(Q7).
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Last steps of the proof of L2-convergence

Opuf — diAuf = —ufué‘ + kyck
Ocul — doAuk = —uluk + ki ck
(5k) Orck — d.Ack = u{‘u2 (ky + kg)c + ukuk
Opuf — d3Auk = —ukuf + koc*
Opf — dyAuf = —ukuf + kock,

» The sequence Wk = >". uk + 2c¥ is compact in L2(Q7).

» Since, for all i, u¥ < W¥, and, up to a subsequence, u¥
converges a.e., the L2(Q1)-compactness of u¥ follows.

» ¢, — 0 so that d:cX — d.Ack — 0, in the sense of
distributions (only).

» Same computations as for the O.D.E. to prove convergence
toward the expected limit system. QED



Applications of the L?-estimate to singular limits: (2)

» (D. Bothe, MP, G. Rolland, '11)

Oruy — diAuy = —k[ugup — us]
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atU3 - d3AU3 = k[U1U2 — U3]

Ui + Uz vT/i— Uz

For fixed k: global existence of classical solutions uX.
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Applications of the L?-estimate to singular limits: (2)

» (D. Bothe, MP, G. Rolland, '11)

Oruy — diAuy = —k[ugup — us]
6tU2 — d2AU2 = _k[U]_U2 — U3]
8tU3 - d3AU3 = k[U1U2 — U3]

Ui + Uz vT/i— Uz

For fixed k: global existence of classical solutions uX.

» What is the limit kinetics when kK — +o00?

» Estimates independent of k:
Slipllu (D) < C YT >0, [[uf] 20 < C.

» A main difficulty: what about k[ujuy — us] ?



Cased1:d2:d3:d

Or(Uf + uk +2u%) — dA(uf + uk +2uf) =0
and by maximum principle

Vi, t, [[(uf + us 4+ 2u8) ()|l o) < Iluf + 13 + 208 1 (q)-
Moreover, it may be proved (D. Bothe) that, as k — +o0
| k[ukuf — Ué(]HLl(QT) < C independent of k.

Then, it follows that the u¥ converge, at least in any LP(Q7),
p < +00, to the unique regular nonnegative solution of

Or(un + u3) —dA(u1 +u3) =0

8t(U2 + U3) — C/A(UQ + U3) =0

(1 + us)(0) = 0 + 6, (uy + us)(0) = 2 + 3,
uiup = us.

} + boundary cond.



Case of different diffusions di # d» # d

Opuf — di Auf = —k[ufuk — uf]
Ocuf — doAuk = —k[ufuk — uk]
Opuk — d3Auk = k[ufuk — uf]
» A main difficulty: no a priori L}(Q7)-estimate on
k(ufuk — u¥) seems to be true !
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Ocuf — doAuk = —k[uf u2 — uk

Opuf — diAuf = —k[uf u2 — uk]
Opuk — d3sAuk = k[ukuk — uf]

» On the other hand, for i = 1,2, we have
{ Oe(uf + uf) — A [AY(uF + uéﬂ =0

0 < min{d;, d3} < Ak % < max{d;,d3} < +c0.
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Opuf — diAuf = —k[uf u2 — uk]
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» On the other hand, for i = 1,2, we have
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> It follows that u¥ + uX are bounded in L?(Q7) for i = 1,2.



Case of different diffusions di # d» # d

Opuf — diAuf = —k[ufuk — uk]
Oruk — o Auk = —k[ukuk — uf]
Opuk — d3sAuk = k[ukuk — uf]

» On the other hand, for i = 1,2, we have

{ Oe(uf + u3) — A [AY(uf + u5)] =0

k k
. k . u+tu :
0< mln{d,', d3} S Ai = Wd:ué( S max{d,, d3} < +00.

> It follows that u¥ + uX are bounded in L?(Q7) for i = 1,2.

» If we knew that they converge pointwise, then we would
deduce that they are compact in L?(Q7) (previous result
above).



Case of different diffusions di # d» # d

Opuf — diAuf = —k[ufuk — uk]
Oruk — o Auk = —k[ukuk — uf]
Opuk — d3sAuk = k[ukuk — uf]

» On the other hand, for i = 1,2, we have

Oe(uf + u5) = A [Af(uf + u5)] =0

{ 0 < min{d;, d3} < Ak .= % < max{d;, d3} < +o0.

> It follows that u¥ + uX are bounded in L?(Q7) for i = 1,2.

» If we knew that they converge pointwise, then we would
deduce that they are compact in L?(Q7) (previous result
above).

» Even not enough to conclude! Need to know that, separately,
the uX are compact in L?(Q1). Convergence a.e. of each of
them would be enough (by dominated convergence).

» The missing information will be given by the entropy inequality



The entropy inequality (we drop the k)

| 2
8tu1 — d1AU1 = 7k[U1U2 — U3]
atU2 — d2AU2 = —k[U1U2 — U3]
Oruz — dsAuz = k[urus — us)
We set 0; = ujlog u; — u; and write the equation in 6;
> 2
Vu;
0:0; = log u; Oru; ; —AG; + Vi | —log u; Au;,
uj
a1 |V
00y — i1 A0, + ——— 1| U1| k[U1U2 — U3] log uy,
>
d,-|Vu,-|2
Z (Gt — d,A) 0i+——-- = —k[U1U2 — U3][|Og(U1U2) — |0g U3] <0.

- i
i

> Integrating leads to the bound

di|Vuj|? ;
/ Z M + k[urun — us][log @] < C (independent of k) .
J QT Ui s

i



Passing to the limit as kK — oo
» Recall the estimates

SliPHUi(f)HLl(Q) < C, VT >0, ||uilliz(qn < C.

di|Vu;[?
/ T VUL L s — us]flog L22] < .
Qr uj u3

The last implies that each V./u; is bounded in L?(Q7).



Passing to the limit as kK — oo
» Recall the estimates

Sl:pHUi(f)HLl(Q) < C, VT >0, ||uilliz(qn < C.

di|Vu;[?
/ T VUL L s — us]flog L22] < .
Qr uj u3

The last implies that each V./u; is bounded in L?(Q7).

> Next, we use for i = 1,2 the identity
at(u,- + U3) — A(d,-u,- + d3U3) =0

to show that ¢/u; + us € L? (0, T; H1(Q)) + LY(Qr)
By Aubin-Simon type of compactness, we deduce that u; + u3 is
compact in L}(Q7) and therefore converges a.e. ...which implies
they converge in L?(Q7) thanks to our previous analysis.



Passing to the limit as kK — oo
» Recall the estimates

Sl:pHUi(f)HLl(Q) < C, VT >0, ||uilliz(qn < C.

di|Vu;[?
/ T VUL L s — us]flog L22] < .
Qr uj u3

The last implies that each V./u; is bounded in L?(Q7).

> Next, we use for i = 1,2 the identity
at(u,- + U3) — A(d,-u,- + d3U3) =0

to show that ¢/u; + us € L? (0, T; H1(Q)) + LY(Qr)
By Aubin-Simon type of compactness, we deduce that u; + u3 is
compact in L}(Q7) and therefore converges a.e. ...which implies
they converge in L?(Q7) thanks to our previous analysis.

> We use the pointwise entropy inequality to prove that all three yu;
converge a.e.. Whence their convergence in L2(Q7).



A general convergence result

(D. Bothe, M.P., G. Rolland)

Opuk — di Auf = —k[ukuk — uf]
Oruk — o Auk = —k[ufuk — uf]
Opul — d3Auk = k[uguk — uf]

Theorem. Up to a subsequence, the uf‘ converge in
[?(Q7),¥YT > 0 to a weak nonnegative solution of

Or(u1 + uz) — A(diun + dzuz) =0 } + boundary cond.

(Lim) at(UQ + U3) — A(d2u2 + d3U3) =0
uilp = u3.

(u1 4+ u3)(0) = u(l) + ug, (u2 4+ u3)(0) = ug + ug,



About the problem (Lim)

Bt(ul + U3) - A(dlul + d3U3) 0

at(UQ + U3) — A(dzUz + d3U3) =0
Uiy = us.

(up + u3)(0) = u + 1S, (up + us3)(0) = ud + u,

} + boundary cond.
(Lim)

If we set, wy := u1 + u3, wo = up + us, then it is equivalent to the
2 X 2 cross-diffusion system

0wy — Awl
(Lim’) Dews — Ao le W2 _ + boundary cond.
Wl(O)—u1+u3, wa( ): +u3,

where ¥ = (1, ¢2) : [0, 00[>— R? is C* and the Jacobian matrix
Di)(wy, wy) satisfies the spectral conditions for this problem to
have unique local classical solution (see H. Amann’s theory).



Open problems

As a by-product of the existence of the limit on [0, c0) of the
k-systems, we obtain existence of a global weak solution, but

(1) Does it coincide with the (a priori local) classical solution?

We can prove uniqueness of global weak solutions for some
range of the diffusions [(d; — d3)?(da — d3)? < 16d;dbdz]. In
this case, the answer is yes, but

(2) It may a priori happen that the strong solution becomes
(only) weak after some time.

(3) Does one have uniqueness of weak solutions for all values
of the d;'s?



Applications of the L?>-compactness to some " relaxed”
cross-diffusion systems: (3)

Classical conservative cross-diffusion systems may be written

{ Oru; — Alaj(v)uj] =0, ey m
Oy (ai(u)u;) =0, u,(O) = u0 > O

where, for instance,
u) = d,' + Z d,'juj-)
J

[N. Shigesada, K. Kawasaki and E. Teramoto|. Local existence of
strong solutions by Amann's theory, but not much about global
existence except for p = 1 (see results and survey by A. Jiingel).

Interaction between species through motion, not through reaction
—— Formation of " patterns like in Turing's instabilities”



Applications of the L?>-compactness to some " relaxed”
cross-diffusion systems: (3)

» Existence of solutions to the cross-diffusion system where
aj : (0,00)™ — [d, o0) continuous (only), d > 0:

Orup — Alai(D)u;] =0, i=1,...,1
iy — 0;Adi; = uj, 5 >0,
Oyui = 0,0; = 0, u;(0) = uIQ > 0.

Model proposed by M. Bendahmane, Th. Lepoutre, A. Marrocco,
B. Perthame (partial results in dimensions N=1,2).



Applications of the L?>-compactness to some " relaxed”
cross-diffusion systems: (3)

» Existence of solutions to the cross-diffusion system where
aj : (0,00)™ — [d, o0) continuous (only), d > 0:

Oruj — Alai(d)u;]) =0, i=1,...,1
iy — 0;Adi; = uj, 5 >0,
Oyuj = 0,0; =0, u;(0) = u’Q > 0.

Model proposed by M. Bendahmane, Th. Lepoutre, A. Marrocco,
B. Perthame (partial results in dimensions N=1,2).

» This relaxed version takes into account that the intensity of
the underlying brownian depends on the density of the whole
population in a neighborhood of size d; of each point.



A general global existence result

THEOREM. (Th. Lepoutre, MP, G. Rolland, '11 ): Existence of
global solutions satisfying for all T > 0, p < 0o

ui € LP(Q7), G € C*(Qr) N LP (0, T; W2P(Qr)),

t
ui(t) — A [/ a,-(ﬁ)u,-] = .
0
L7,' — 5;AL7; = Uu;

If, moreover, a; is locally Lipschitz continuous, the solution is
classical, unique and

ui € L®(Q7), 0ru;, A(a;(d)u;) € LY _((0, T]; LP()) .

loc

8tu,- — A (a,-(L"/,-)u,-) =0.



Step 1 of the proof: L?-estimate

> We first truncate the nonlinearities a;(-) and prove existence of a
fixed point for the mapping

T v =(Vi)icicm = u= (Ui)icicm € X == ML X;,
u; weak solution of 9,u; — A (a;(¥)u;) = 0, u;(0) = u?

Xi = {vi € 2(Q7); 0:V; € L*(Q7), Vi = (I — 6;A) v}
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> We first truncate the nonlinearities a;(-) and prove existence of a
fixed point for the mapping

T:v=(Vi)icicm — U= (U)i<i<m € X == ML, X;,
u; weak solution of 9,u; — A (a;(¥)u;) = 0, u;(0) = u?

v
Xi = {vi € L*(Q7); 0:¥; € L*(Q1), ¥, (I — 6 A) ;)

» We use the L2 estimate +-compactness to prove that this mapping
T is well-defined + satisfies the Leray-Schauder fixed-point
theorem:
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> We first truncate the nonlinearities a;(-) and prove existence of a
fixed point for the mapping

T:v=(Vi)icicm — U= (U)i<i<m € X == ML, X;,
u; weak solution of 9,u; — A (a;(¥)u;) = 0, u;(0) = u?

v
Xi = {vi € L*(Q7); 0:¥; € L*(Q1), ¥, (I — 6 A) ;)

» We use the L2 estimate +-compactness to prove that this mapping
T is well-defined + satisfies the Leray-Schauder fixed-point
theorem:

» First, we can solve in L2(QT) -with estimates- the linear problem

t
—A/ A,'U,':U?, al,u,-:O, (*)
0

where A; € L*(Q7),0 < a < A; <3< 00. Here A; := a;(V).



Step 1 of the proof: L?-estimate

>

We first truncate the nonlinearities 2;(-) and prove existence of a
fixed point for the mapping

T:v=(Vi)icicm — U= (U)i<i<m € X == ML, X;,
u; weak solution of 9,u; — A (a;(¥)u;) = 0, u;(0) = u?

v
Xi = {vi € L*(Q7); 0:¥; € L*(Q1), ¥, (I — 6 A) ;)

We use the L2 estimate +-compactness to prove that this mapping
T is well-defined + satisfies the Leray-Schauder fixed-point
theorem:

First, we can solve in L2(QT) -with estimates- the linear problem

t
—A/ A,'U,':U?, al,u,-:O, (*)
0

where A; € L*(Q7),0 < a < A; <3< 00. Here A; := a;(V).

Next, the L? compactness together with the choice of X; implies
that 7 is compact. Coupled with uniqueness of the weak solutions
of (*), it follows that T is continuous.



Step 2 of the proof: i € L |

U,‘(t) — A/o a,-(ﬁ)u,- = u?, ﬁ,’(l’) — 5,‘Aﬂi(t) = u,-(t)

may be rewritten

Gi(t) — A [5;ﬁ;+/ota,-(ﬁ)u,-] yy



Step 2 of the proof: i € L |
> t
U,‘(t) — A/ a,-(ﬁ)u,- = u?, ﬁ,’(l’) — 5,‘Aﬂi(t) = u,-(t)
0
may be rewritten
t
gi(t) — A |:5,'L7,' +/ a,'(ﬁ)u,-] = u,(-).

0

» Since #; > 0, and thanks to Neumann bdy conditions:

t t
|\6,-U,-+/ a,-([l)u,-||,_oo(Q) <C |:||U?LOC(Q) +/ {5,'[7,' +/ a;(ﬂ)u;}] .
0 Q 0



Step 2 of the proof: i € L |
> t
U,‘(t) - A/ a,-(ﬁ)u,- = u?, ﬁ,’(l’) - 5,‘Aﬂi(t) = u,-(t)
0
may be rewritten
t
gi(t) — A [5;ﬁ; +/ a,'(ﬁ)u,-] = u,(-).

0

» Since #; > 0, and thanks to Neumann bdy conditions:

t t
|\6,-U,-+/ a,-(El)u,-H,_oo(Q) <C |:||U?LOC(Q) +/ {5,'[7,' +/ a;(ﬁ)u;}] .
0 Q 0

» We may bound fQT a;(&)u; independently of the upper bound
of a; (main point ! )



Step 2 of the proof: i € L |

U,‘(t) — A/o a,-(ﬁ)u,- = u?, ﬁ,’(l’) — 5,‘Aﬂi(t) = u,-(t)

may be rewritten
t
gi(t) — A [5;ﬁ; +/ a,'(ﬁ)u,-] = u,(-).
0

» Since #; > 0, and thanks to Neumann bdy conditions:

t t
|\6,-U,-+/ a,-(fl)u,-||,_oo(Q) <C |:||U?LOC(Q) +/ {(5,‘[7,' +/ a;(ﬁ)u;}] .
0 Q 0

» We may bound fQT a;(&)u; independently of the upper bound
of a; (main point ! )

> It follows || dil[ L (q;) < C. Thus, we get rid of the truncation
of a;.



Step 3: Use of Krylov-Safonov estimates

> We apply the C* estimates of Krylov-Safonov to
U, = fot a;({)u; which satisfies

0:U; — ai(0)AU; = a;(d) u,Q € L*(Q7),
where now a < a;(d) < 3(T) < +oc.

= |Uillce(q,) < C for some a € (0,1).



Step 3: Use of Krylov-Safonov estimates

> We apply the C* estimates of Krylov-Safonov to
U, = fot a;({)u; which satisfies

O:Uj — ai(i)AU; = aj(ii) uf € L®(Q7),
where now a < a;(d) < 3(T) < +oc.
= |Uillce(q,) < C for some a € (0,1).
» Recall that, for w; := §;{; + fot ai(0)u; = 0;d; + U;,
—Aw; = 1P — i; € L°(Q7) = Vw; € L®(Q7)

8tW,' — 6,-A((’)tw,-) = a,-(ﬁ)u,- < C(T)Ui
= 0< 0w < G (T)id; = Orw; € L(Q7).



Step 3: Use of Krylov-Safonov estimates

> We apply the C* estimates of Krylov-Safonov to
U, = fot a;({)u; which satisfies

0: Ui — ai(0)AU; = ai( i) uf € L®(Qr),
where now a < a;(d) < 3(T) < +oc.
= |Uillce(q,) < C for some a € (0,1).
» Recall that, for w; := §;{; + fot ai(0)u; = 0;d; + U;,
—Aw; = 1P — i; € L°(Q7) = Vw; € L®(Q7)
Orw; — 8;A(0rw;) = a;(b)u; < C(T)y;
=0 < 0w < G(T)i; = 0ew; € L™(Q7).

» = wj; is Lipschitz-continuous

= H(S,'ﬂ,‘”cn(@ﬂ < C.



Step 4: Use the maximal LP-regularity theory

» Recall that for U;(t fo
O:U; — aj(0)AU; = a;(d) u? € L>(Q7),

Now, we know that a;(i) is continuous on @+ and
bounded from below. Therefore, we have LP-maximal
regularity. In particular,

0:U; = a;(d)u; € LP(Q7) for all p < +o0.

= U; € LP(QT)



Step 4: Use the maximal LP-regularity theory

» Recall that for U;(t fo
O:U; — aj(0)AU; = a;(d) u? € L>(Q7),

Now, we know that a;(i) is continuous on @+ and
bounded from below. Therefore, we have LP-maximal
regularity. In particular,

0:U; = a;(d)u; € LP(Q7) for all p < +o0.
= U; € LP(QT)
» And we get more if a; is locally Lipschitz :

Oeui, A (a;(d)u;) € LY

loc

((0, T]; LP(Q2)), Vp < oc.



Again the [2-approach for uniqueness !
Let u, v be two solutions, a; = a;({), bj = a;i(V).
8t(u,- — V,') — A [a,-(u,- — V,') + v,-(a,- — b,)] =0.

This may be rewritten with U; = u; —v;,U=01—-V

ol — A [EH‘UI‘ + ViA; - U} =0,i=1,....,m,

1
A = / Da,-(tﬁ + (1 — t)\7)dt S LOO(QT)
0

Proving U = 0 is equivalent to solving the dual problem for any
F e COOO(QT)m (here B,’j = VJ'AJ','):

wiaatwiaAwi S LZ(QT)
Oebi + ajAp; + (I — 6;A) 1 (B; - AY) = F; (3)
Y = (Y15, %m), Ohi =0, ¥i(T) =0.



