Modeling	Rigorous asymptotics	Conclusion
000	00000	000

From a microscopic model to a macroscopic model with cross-diffusion in Population Dynamics

Summer School Analysis and Applications of Partial Differential Equations Graz, Austria – September 8th 2014

Ariane Trescases

CMLA, ENS Cachan PhD advisor: Laurent Desvillettes

From a microscopic model to a macroscopic model with cross-diffusion in Population Dynamics

Ariane Trescases

Modeling	Rigorous asymptotics	Conclusion
000	00000	000

Outline

Modeling

Classical models and cross-diffusion Microscopic model

Rigorous asymptotics

Main result Proof

Conclusion

Results of existence Conclusion

イロン イロン イヨン イヨン

Modeling	Rigorous asymptotics	Conclusion
000	00000	000

Modeling

Classical models and cross-diffusion Microscopic model

Rigorous asymptotics Main result Proof

Conclusion

Results of existence Conclusion

・ロト ・回ト ・ヨト ・ヨト

Modeling	Rigorous asymptotics	Conclusion
● ○ ○	00000	000
○ ○ ○	0000	00
Classical models and cross-diffusion		

Classical models

 $u := u(t) \ge 0$ (and $v := v(t) \ge 0$) : densities of species at time $t \ge 0$. $u_0 \ge 0$ (and v_0) : initial datum. Evolution of u (and v)?

Logistic equation (\sim 1840)

 $d_t u = ru(1-u).$

Competition for the ressources.

Lotka-Volterra system (1925) $\begin{cases}
 d_t u = u(r_1 - r_3 v), \\
 d_t v = -v(r_2 - r_4 u).
\end{cases}$ Predator-prev interaction.

Modeling	Rigorous asymptotics	Conclusion
000	00000	000

Spatial models

 $u := u(t, x) \ge 0$: density of species at time $t \ge 0$, space $x \in \Omega \subset \mathbb{R}^N$, $u_0 := u_0(x) \ge 0$: initial datum.

Fisher-KPP equation (1938)

$$\partial_t u - D\Delta_x u = ru(1-u).$$

The diffusion term $D\Delta_x u$ (with D > 0) :

- ► has a homogenisation effect,
- ▶ can be seen as the "limit" of a random walk.

Modeling	Rigorous asymptotics	Conclusion
○○●	00000	000
○○○	0000	00
Classical models and cross-diffusion		

Cross diffusions

 $u := u(t, x) \ge 0$ (resp. $v := v(t, x) \ge 0$) : density of species 1 (resp. 2) at time $t \ge 0$ and space $x \in \Omega$.

Triangular Shigesada-Teramoto-Kawasaki system (1979)

$$\begin{cases} \partial_t u - \Delta_x [Du + \mathbf{u}\mathbf{v}] = u[1 - u - v], \\ \partial_t v - \Delta_x v = v[1 - v - u]. \end{cases}$$

Interactions between the two species :

- ▶ intraspecific and interspecific competitions,
- ▶ stress induced by the presence of species 2 :

$$\Delta_{x} \left[uv \right] = \underbrace{\nabla_{x} \cdot \left[u \nabla_{x} v \right]}_{\mathrm{transport}} + \underbrace{\nabla_{x} \cdot \left[v \nabla_{x} u \right]}_{\mathrm{Fickian \ diffusion}} \ .$$

・ロン ・聞と ・ヨン ・ヨン

Modeling	Rigorous asymptotics	Conclusion
000 000	00000 0000	000
Microscopia model		

Microscopic model

lida-Mimura-Ninomiya system (2006)

$$\begin{cases} \partial_t u_A^{\varepsilon} - d_A \Delta_x u_A^{\varepsilon} = \left[1 - \left(u_A^{\varepsilon} + u_B^{\varepsilon}\right) - v^{\varepsilon}\right] u_A^{\varepsilon} + \frac{1}{\varepsilon} \left[k(v^{\varepsilon}) u_B^{\varepsilon} - h(v^{\varepsilon}) u_A^{\varepsilon}\right], \\ \partial_t u_B^{\varepsilon} - d_B \Delta_x u_B^{\varepsilon} = \left[1 - \left(u_A^{\varepsilon} + u_B^{\varepsilon}\right) - v^{\varepsilon}\right] u_B^{\varepsilon} - \frac{1}{\varepsilon} \left[k(v^{\varepsilon}) u_B^{\varepsilon} - h(v^{\varepsilon}) u_A^{\varepsilon}\right], \\ \partial_t v^{\varepsilon} - \Delta_x v^{\varepsilon} = \left[1 - v^{\varepsilon} - \left(u_A^{\varepsilon} + u_B^{\varepsilon}\right)\right] v^{\varepsilon}, \end{cases}$$

▶ the species 1 exists in a quiet state A and a stressed state B $(d_B > d_A)$,

▶ the stress is induced by the presence of the species 2,

▶ the rate of switch is of order $1/\varepsilon \gg 1$.

Modeling	Rigorous asymptotics	Conclusion
	00000 0000	000

Microscopic model

Microscopic model : acceleration of the switch

Equations for the densities of species

$$\begin{cases} \partial_t (u_A^{\varepsilon} + u_B^{\varepsilon}) - \Delta_x \left[(d_A \frac{u_A^{\varepsilon}}{u_A^{\varepsilon} + u_B^{\varepsilon}} + d_B \frac{u_B^{\varepsilon}}{u_A^{\varepsilon} + u_B^{\varepsilon}}) (u_A^{\varepsilon} + u_B^{\varepsilon}) \right] \\ &= [1 - (u_A^{\varepsilon} + u_B^{\varepsilon}) - v^{\varepsilon}] (u_A^{\varepsilon} + u_B^{\varepsilon}), \\ \partial_t v^{\varepsilon} - \Delta_x v^{\varepsilon} = [1 - v^{\varepsilon} - (u_A^{\varepsilon} + u_B^{\varepsilon})] v^{\varepsilon}. \end{cases}$$

Computation of the formal limit

If $(u_A^{\varepsilon}, u_B^{\varepsilon}, v^{\varepsilon}) \rightarrow (u_A, u_B, v)$ (in a strong sense) when $\varepsilon \rightarrow 0$ then $h(v)u_A = k(v)u_B$, i. e. $\frac{u_A}{u_A + u_B} = \frac{k(v)}{h(v) + k(v)}$ and $\frac{u_B}{u_A + u_B} = \frac{h(v)}{h(v) + k(v)}$.

Modeling	Rigorous asymptotics	Conclusion
000 000	00000 0000	000
Microscopic mode		

Microscopic model : acceleration of the switch

Equations for the densities of species at $\varepsilon = 0$

$$\begin{cases} \partial_t (u_A + u_B) - \Delta_x \left[(d_A \frac{k(v)}{h(v) + k(v)} + d_B \frac{h(v)}{h(v) + k(v)})(u_A + u_B) \right] \\ = \left[1 - (u_A + u_B) - v \right] (u_A + u_B), \\ \partial_t v - \Delta_x v = \left[1 - v - (u_A + u_B) \right] v. \end{cases}$$

With accurate choices of the functions h and k, the densities $(u_A + u_B, v)$ satisfy the triangular Shigesada-Teramoto-Kawasaki system.

イロト イポト イヨト イヨト

Modeling	Rigorous asymptotics	Conclusion
000	00000	000

Modeling

Classical models and cross-diffusion Microscopic model

Rigorous asymptotics Main result Proof

Conclusion

Results of existence Conclusion

► E ∽ Q Ariane Trescases

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Main result

A more general cross-diffusion system

$$\begin{array}{c} \partial_t u - \Delta_x \left[Du + uG(v) \right] = u [1 - u^a - v^b] & \text{in } \mathbb{R}_+ \times \Omega, \\ \partial_t v - \Delta_x v = v [1 - v^c - u^d] & \text{in } \mathbb{R}_+ \times \Omega, \\ \nabla_x u(t, x) \cdot n(x) = \nabla_x v^\varepsilon(t, x) \cdot n(x) = 0 & \forall t \ge 0, x \in \partial\Omega, \\ u(0, x) = u_{in}(x), & v(0, x) = v_{in}(x) & \forall x \in \Omega. \end{array} \right\}$$

$$(1)$$

From a microscopic model to a macroscopic model with cross-diffusion in Population Dynamics

メロト メポト メヨト メヨト

Modeling	Rigorous asymptotics	Conclusion
000	00000	000
000	0000	00

Main result

Microscopic model

$$\partial_{t} u_{A}^{\varepsilon} - d_{A} \Delta_{x} u_{A}^{\varepsilon} = \left[1 - \left(u_{A}^{\varepsilon} + u_{B}^{\varepsilon}\right)^{a} - \left(v^{\varepsilon}\right)^{b}\right] u_{A}^{\varepsilon} + \frac{1}{\varepsilon} \left[k(v^{\varepsilon}) u_{B}^{\varepsilon} - h(v^{\varepsilon}) u_{A}^{\varepsilon}\right],$$

$$\partial_{t} u_{B}^{\varepsilon} - d_{B} \Delta_{x} u_{B}^{\varepsilon} = \left[1 - \left(u_{A}^{\varepsilon} + u_{B}^{\varepsilon}\right)^{a} - \left(v^{\varepsilon}\right)^{b}\right] u_{B}^{\varepsilon} - \frac{1}{\varepsilon} \left[k(v^{\varepsilon}) u_{B}^{\varepsilon} - h(v^{\varepsilon}) u_{A}^{\varepsilon}\right],$$

$$\partial_{t} v^{\varepsilon} - \Delta_{x} v^{\varepsilon} = \left[1 - \left(v^{\varepsilon}\right)^{c} - \left(u_{A}^{\varepsilon} + u_{B}^{\varepsilon}\right)^{d}\right] v^{\varepsilon},$$

$$\nabla_{x} u_{A}(t, x) \cdot n(x) = \nabla_{x} u_{B}^{\varepsilon}(t, x) \cdot n(x) = 0 \quad \forall t \ge 0, x \in \partial\Omega,$$

$$\nabla_{x} v^{\varepsilon}(t, x) \cdot n(x) = 0 \quad \forall t \ge 0, x \in \partial\Omega,$$

$$u_{A}(0, x) = u_{A,in}(x), \quad u_{B}(0, x) = u_{B,in}(x) \quad v(0, x) = v_{in}(x) \quad \forall x \in \Omega.$$

$$(2)$$

► E ∽ Q Ariane Trescases

・ロト ・四ト ・ヨト ・ヨト

From a microscopic model to a macroscopic model with cross-diffusion in Population Dynamics

Modeling	Rigorous asymptotics	Conclusion
000	00000 0000	000
Main result		

Known results

Existence of nonnegative solutions $(u_A^{\varepsilon}, u_B^{\varepsilon}, v^{\varepsilon})$ of (2) is classical.

Results on the asymptotics

- ▶ for a priori uniformly bounded solutions [lida Mimura Ninomiya 06],
- ▶ for stationnary solutions [Izuhara Mimura, 08],
- ▶ in dimension 1 [Conforto Desvillettes, 09],
- ▶ when the reaction term is Lipschitz continuous [Murakawa 12].

Main result

Main theorem : assumptions

Assumption A

• Ω is a smooth bounded domain of \mathbb{R}^N ,

►
$$d_B > d_A > 0$$
, $a, b, c, d > 0$,

- ▶ *h*, *k* lie in $C^1(\mathbb{R}_+, \mathbb{R}_+)$ and are lower bounded by a positive constant,
- ► $u_{A,in}, u_{B,in}, v_{in} \ge 0$ such that $u_{A,in}, u_{B,in} \in L^{p_0}(\Omega)$,

$$v_{in} \in L^{\infty}(\Omega) \cap W^{2,1+p_0/d}(\Omega)$$
 for some $p_0 > 1$, and

 $\nabla_{x} u_{A,in} \cdot n(x) = \nabla_{x} u_{B,in} \cdot n(x) = \nabla_{x} v_{in} \cdot n(x) = 0,$ $= a > d \text{ or } (a \le 1 \text{ and } d \le 2)$

►
$$a > d$$
 or $(a \le 1 \text{ and } d \le 2)$.

Modeling	Rigorous asymptotics	Conclusion
000	0000●	000
000	0000	00
Main result		

Theorem

Theorem (Desvillettes, T.)

Under Assumption A, When $\varepsilon \to 0$, $(u_A^{\varepsilon}, u_B^{\varepsilon}, v^{\varepsilon})$ converges (up to a subsequence) for almost every $(t, x) \in \mathbb{R}_+ \times \Omega$ to a limit (u_A, u_B, v) lying in $L^{q_0}([0, T] \times \Omega) \times L^{q_0}([0, T] \times \Omega) \times L^{\infty}([0, T] \times \Omega)$ for all T > 0. Furthermore,

$$h(v) u_A = k(v) u_B$$

and $(u := u_A + u_B, v)$ is a weak solution of system (1) with

$$D+G(v)=\frac{d_Ak(v)+d_Bh(v)}{h(v)+k(v)}$$

and initial data $u(0, \cdot) = u_{A,in} + u_{B,in}$, $v(0, \cdot) = v_{in}$.

Modeling	Rigorous asymptotics	Conclusion
000	00000	000
000	0000	00
- (

Sketch of the proof

We fix T > 0 and consider a smooth nonnegative solution $(u_A^{\varepsilon}, u_B^{\varepsilon}, v^{\varepsilon})$.

- **•** Estimates uniformly in ε ,
- ► Convergence of the densities (compactness : Aubin's lemma),
- ► Vanishing of $h(v)u_A k(v)u_B$.

イロト イポト イヨト イヨト

Modeling	Rigorous asymptotics	Conclusion
000	○○○○	000
000	○●○○	00
Durant		

Tool 1 : solve the equation of v^{ε} first

$$\partial_t v^{\varepsilon} - \Delta_x v^{\varepsilon} = [1 - (v^{\varepsilon})^c - (u^{\varepsilon}_A + u^{\varepsilon}_B)^d] v^{\varepsilon}.$$

 ▶ Maximum principle : 0 ≤ v^ε ≤ C_T.
 ▶ Properties of the heat kernel : for all p > 1, ||∂_tv^ε||_{L^p} + ||∇²_xv^ε||_{L^p} ≤ C_T(1 + ||(u^ε_A + u^ε_B)^d||_{L^p}).

Modeling	Rigorous asymptotics	Conclusion
000	○○○○○	000
000	○○●○	00
Proof		

Tool 2 : Duality lemma (case $a \le 1$, $d \le 2$)

 $\begin{array}{ll} \mbox{Lemma ([Pierre Schmitt, 2000])} \\ \mbox{If } 0 < m_0 \leq M(t,x) \leq m_1 \mbox{ and } u_{in} \in L^2(\Omega) \mbox{ then any solution } u \geq 0 \mbox{ of } \\ \\ \left\{ \begin{array}{ll} \partial_t u - \Delta_x(Mu) \leq K \mbox{ in } [0,T] \times \Omega, \\ u(0,x) = u_{in}(x) \mbox{ in } \Omega, \\ \nabla_x(Mu)(t,x) \cdot n(x) = 0 \mbox{ on } [0,T] \times \partial \Omega, \end{array} \right. \\ \\ \mbox{satisfies} \qquad \|u\|_{L^2([0,T] \times \Omega)} \leq C_T \mbox{ (} \|u_{in}\|_{L^2(\Omega)} + K \mbox{)}. \\ \\ \mbox{ The total density of species 1 satisfies uniformly in } \varepsilon : \end{array}$

$$\|u_A^{\varepsilon}+u_B^{\varepsilon}\|_{L^2}\leq C_T.$$

Modeling	Rigorous asymptotics	Conclusion
000	○○○○○	000
000	○○○●	00
Proof		

Tool 3 : Entropy

For any p > 1, let

$$\mathscr{E}^{\varepsilon}(t) := \int_{\Omega} h(v^{\varepsilon})^{p-1} \frac{(u_A^{\varepsilon})^p}{p}(t) + \int_{\Omega} k(v^{\varepsilon})^{p-1} \frac{(u_B^{\varepsilon})^p}{p}(t)$$

- ▶ This functional does not increase too much,
- ▶ the terms in $O(\frac{1}{\varepsilon})$ have a (good) sign,
- consequences : estimates for $u_A^{\varepsilon}, u_B^{\varepsilon}$ in Sobolev spaces (uniformly in ε)
- + estimates for $k(v^{\varepsilon}) u_B^{\varepsilon} h(v^{\varepsilon}) u_A^{\varepsilon}$,

Modeling	Rigorous asymptotics	Conclusion
000	00000	000
000	0000	00

Modeling

Classical models and cross-diffusion Microscopic model

Rigorous asymptotics Main result Proof

Conclusion

Results of existence Conclusion

・ロト ・回ト ・ヨト ・ヨト

Modeling	Rigorous asymptotics	Conclusion
000 000	00000 0000	• 00 00
Bucks for the second		

Known results

Existence of local (in time) solution [Amann, 90]. Global solutions?

Quadratic case a = b = c = d = 1

- ▶ in small dimension (N = 2 : [Lou Ni Wu, 98]),
- ▶ when $G(v) = d_G v$ with $d_G > 0$ small [Choi Lui Yamada, 03],
- ▶ in presence of self-diffusion [Choi Lui Yamada, 04].

Case a > d

Global strong solutions (for smooth initial data) [Yamada, 95].

Results of existence

Main theorem : assumptions

Assumption B

▶
$$\Omega$$
 is a smooth bounded domain of \mathbb{R}^N ,
▶ $D > 0$, $a, b, c, d > 0$,
▶ $G := G(v) \ge 0$ is C^1 on \mathbb{R}_+ ,
▶ $u_{in} \ge 0$, $v_{in} \ge 0$ such that $u_{in} \in L^{p_0}(\Omega)$, $v_{in} \in L^{\infty}(\Omega) \cap W^{2,1+p_0/d}(\Omega)$
for some $p_0 > 1$, and $\nabla_x u_{in} \cdot n(x) = \nabla_x v_{in} \cdot n(x) = 0$,
▶ $(a > d)$ or $(a \le 1$ and $d \le 2)$.

イロト イロト イヨト イヨト

Modeling	Rigorous asymptotics	Conclusion
000	00000	00 00
Results of existence		

Main theorem

Theorem

Under assumption B, there exists a global weak nonnegative solution (u, v) of (1) lying in $L^{q_0}([0, T] \times \Omega) \times L^{\infty}([0, T] \times \Omega)$ for all T > 0.

From a microscopic model to a macroscopic model with cross-diffusion in Population Dynamics

イロト イポト イヨト イヨト

Modeling	Rigorous asymptotics	Conclusion
000	00000	00 00
Results of existence		

Main theorem

Theorem

Under assumption B, there exists a global weak nonnegative solution (u, v) of (1) lying in $L^{q_0}([0, T] \times \Omega) \times L^{\infty}([0, T] \times \Omega)$ for all T > 0.

Proof

The function G and parameter D are given. It suffices to define d_B , d_A , h and k such that

$$D+G(v)=\frac{d_Ak(v)+d_Bh(v)}{h(v)+k(v)}.$$

From a microscopic model to a macroscopic model with cross-diffusion in Population Dynamics

イロト イポト イヨト イヨト

Modeling	Rigorous asymptotics	Conclusion
Conclusion		••

Results

Main results

- ► Convergence of the solutions of the approximating system,
- ► Corollary : existence of weak solutions for the cross-diffusion system.

Other results in the case a < d

- ► Classical solutions for the cross-diffusion system,
- Stability in L^2 , and then uniqueness.

・ロト ・日下・ ・日下・ ・日下

Modeling	Rigorous asymptotics	Conclusion
000 000	00000 0000	000 00
Conclusion		

Perspectives

Non-triangular case (with Desvillettes, Lepoutre and Moussa),
 Self diffusions.

From a microscopic model to a macroscopic model with cross-diffusion in Population Dynamics

・ロト ・回ト ・ヨト ・ヨト