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Biological problem

Figure 1: Biological process in soil
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where b(t, x), f(t, x), m1(t, x), m2(t, x), n(t, x) and c(t, x) are the densities of MB, F , SW ,
UDSM , DSM and C at time t and at position x, respectively, t 2 [0,+1) and x 2 ⌦ ⇢ R3, ⌦ is
bounded with smooth boundary @⌦. Db, Df , Dm2 , Dn and Dc are positive constants representing
diffusion coefficients of MB, F , UDSM , DSM and C, respectively. In our model, we assume
that MB decomposes F and DSM according to Monod equation ([]) with k (k > 0) is the
maximal growth rate of MB when decomposing F and Kb (Kb > 0) is the half-saturation constant.
µ (µ > 0) is mortality rate of MB and � (� > 0) is breathing rate of MB. ↵, 1 � ↵ � � and �
are constant in (0, 1) representing the proportions of MB dead transformed in to SW , UDSM
and DSM , respectively. In our model, we also assume that without MB, F growth according to
Logistic equation ([]) with r (r > 0) is the growth rate of F and K (K > 0) is the carrying capacity
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The model
Dirichlet boundary condition

Initial condition

of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following
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with the Dirichlet boundary condition

b(t, x) = f(t, x) = n(t, x) = 0 on [0,+1)⇥ @⌦ (2.5)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)

In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:

|u|L1 =

Z

⌦

udx.

L2(⌦) denotes the space of square integrable real valued functions defined on ⌦ with the norm |.|
corresponding to the scalar product defined

(u, v) =

Z

⌦

u.vdx

3

of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

@b

@t
= Db�b+

kfb

Kb + f
+

knb

Kb + n
� µb� �b

@f

@t
= Df�f + rf

✓
1� f

K

◆
� kfb

Kb + f

@n

@t
= Dn�n+ �µb� knb

Kb + n

(2.4)

with the Dirichlet boundary condition

b(t, x) = f(t, x) = n(t, x) = 0 on [0,+1)⇥ @⌦ (2.5)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)

In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:

|u|L1 =

Z

⌦

udx.

L2(⌦) denotes the space of square integrable real valued functions defined on ⌦ with the norm |.|
corresponding to the scalar product defined

(u, v) =

Z

⌦

u.vdx

3

(2)

(3)



Summer school: Analysis and application
of partial differential equations

Asymptotic Behavior of Microbial Degradation Dynamics08-11/Sept/2014 /41

School&of&Applied&Mathematics&and&
Informatics&

13

The model Figure 1: Biological process in soil

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

@b

@t
= Db�b+

kfb

Kb + f
+

knb

Kb + n
� µb� �b

@f

@t
= Df�f + rf

✓
1� f

K

◆
� kfb

Kb + f

@m1

@t
= ↵µb

@m2

@t
= Dm2�m2 + (1� ↵� �)µb

@n

@t
= Dn�n+ �µb� knb

Kb + n

@c

@t
= Dc�c+ �b

(2.1)

where b(t, x), f(t, x), m1(t, x), m2(t, x), n(t, x) and c(t, x) are the densities of MB, F , SW ,
UDSM , DSM and C at time t and at position x, respectively, t 2 [0,+1) and x 2 ⌦ ⇢ R3, ⌦ is
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Existence and Uniqueness of global mild solutions

of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following
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and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)

In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:

|u|L1 =
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udx.

L2(⌦) denotes the space of square integrable real valued functions defined on ⌦ with the norm |.|
corresponding to the scalar product defined
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We denote the fractional power spaces associated to A by

X↵ = (D(A↵), (., .)X↵) , ↵ 2 R.

The inner product in X↵ is given by
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where
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In this notation,
X1 = (D(��D))

3, X
1
2 = H, X0 = M, X� 1

2 = (H)0.

The operator A in X0 can be extended or restricted, respectively, to a positive sectorial operator
in X↵ with domain X↵+1, ↵ 2 R, and the corresponding semigroups e�At, t � 0, in X↵ are
obtained from each other by natural restrictions and extensions. Moreover, if �  ↵ we have
e�At(X�) ⇢ X↵ and

||e�At||L(X� ;X↵) 
c↵,�
t↵��

, t > 0, (3.1)

for some constant c↵,� � 0, where ||.||L(V ;W ) denotes the norm of a linear operator between the
normed spaces V and W .

H = L2(⌦)3, H+ = positive functions in H
V = (H1

0 (⌦))
3, V+ = positive functions in V

For any initial value u0 = (b0, f0, n0) 2 V+ given, there exists a unique positive global mild solution u(t) =
(b(t), f(t), n(t)) of the problem (5.4)� (5.6).
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Existence and Uniqueness of global mild solutions

of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following
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and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)

In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:
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Sketch of proof

 Positivity preserving:

 Local Lipschitz:

Using Theorem 2.1 in [Efendiev, M.A. and Eberl, H.J. 2007]
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denotes the norm of a linear operator between the
normed spaces V and W (see, e.g., Section 2.1.1 in [28]).

We are now ready to prove the following existence theorem.
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global mild solution u(t) = (b(t), f(t), n(t)) of the problem (1.2) - (1.4).

Proof. We first prove positivity preserving, i.e. non-negative initial data imply non-negative so-
lutions. Indeed, let u(t) = (b(t), f(t), n(t)) be a solution of (1.2) - (1.4) with initial condition
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Existence and Uniqueness of global mild solutions

of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

@b

@t
= Db�b+

kfb

Kb + f
+

knb

Kb + n
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K
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� kfb

Kb + f
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@t
= Dn�n+ �µb� knb

Kb + n

(2.4)

with the Dirichlet boundary condition

b(t, x) = f(t, x) = n(t, x) = 0 on [0,+1)⇥ @⌦ (2.5)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)

In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:

|u|L1 =

Z

⌦

udx.

L2(⌦) denotes the space of square integrable real valued functions defined on ⌦ with the norm |.|
corresponding to the scalar product defined

(u, v) =

Z

⌦

u.vdx

3
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Existence and Uniqueness of global mild solutions

of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following
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and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)
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Existence and Uniqueness of global mild solutions

of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following
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Therefore,

|F (u)� F (u)|2  c(R, k,Kb, µ, �)||u� u||2, (2.2)

for all u, v 2 V+ such that kuk, kvk  R, i.e. F = (F
1

, F
2

, F
3

) : X1/2
= V+ �! X = H+ is

locally Lipschitz. This combining with the fact that A is a sectorial operator in X lead to the fact
that there is a unique non-negative local mild solution of (1.2) - (1.4) given by

u(t) = e�Atu
0

+

Z t

0

e�A(t�s)F (u(s))ds. (2.3)

Moreover, this solution depends continuously on the initial data.
Finally, thanks to the priori estimates of solutions u(t) = (b(t), f(t), n(t)) (see part a) in the

the proof in Theorem 2 below), the non-negative solutions of (1.2) - (1.4) are globally defined.

3. Existence of a finite-dimensional global attractor

By Theorem 1, we can define the continuous semigroup S(t) : V+ ! V+, t � 0, associated with
the problem (1.2) - (1.4) as follows

S(t)u
0

:= u(t) = (b(t), f(t), n(t)),

where u(·) is the unique mild solution to problem (1.2) - (1.4) with the initial datum u
0

.

Theorem 2. The semigroup {S(t)}t�0

associated with problem (1.2) - (1.4) possesses a finite-
dimensional global attractor in V+ provided

�
1

Db + µ+ � � 2k > 0, (3.1)

where �
1

> 0 is the first eigenvalue of the operator ��D on the domain ⌦ with the homogeneous
Dirichlet boundary condition.

Proof. (a) Existence of an absorbing set in V+. Firstly, we prove the existence of an absorbing set
in H+. We multiply the first equation of (1.2) by b, integrate over ⌦, then use the Green formula
and (1.3), to obtain

1

2

d

dt
|b|2L2 +Db|rb|2L2 =

Z

⌦

kfb2

Kb + f
dx+

Z

⌦

knb2

Kb + n
dx� (µ+ �)

Z

⌦

b2dx

 (2k � (µ+ �))|b|2L2 ,

and hence, by the Poincaré inequality,

d

dt
|b|2L2 + 2(�

1

Db + µ+ � � 2k)|b|2L2  0.

7

Therefore,

is locally Lipschitz.
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Existence and Uniqueness of global mild solutions

of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

@b

@t
= Db�b+

kfb

Kb + f
+

knb

Kb + n
� µb� �b

@f

@t
= Df�f + rf

✓
1� f

K

◆
� kfb

Kb + f

@n

@t
= Dn�n+ �µb� knb

Kb + n

(2.4)

with the Dirichlet boundary condition

b(t, x) = f(t, x) = n(t, x) = 0 on [0,+1)⇥ @⌦ (2.5)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)

In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:

|u|L1 =

Z

⌦

udx.

L2(⌦) denotes the space of square integrable real valued functions defined on ⌦ with the norm |.|
corresponding to the scalar product defined

(u, v) =

Z

⌦

u.vdx

3

Sketch of proof

 Positivity preserving:

 Local Lipschitz:

Using Theorem 2.1 in [Efendiev, M.A. and Eberl, H.J. 2007]

local non-negative mild solution + priori estimate of solutions (see later on) 

=> global non-negative mild solution
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Reminder

of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following
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the proof in Theorem 2 below), the non-negative solutions of (1.2) - (1.4) are globally defined.

3. Existence of a finite-dimensional global attractor

By Theorem 1, we can define the continuous semigroup S(t) : V+ ! V+, t � 0, associated with
the problem (1.2) - (1.4) as follows
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Proof. (a) Existence of an absorbing set in V+. Firstly, we prove the existence of an absorbing set
in H+. We multiply the first equation of (1.2) by b, integrate over ⌦, then use the Green formula
and (1.3), to obtain
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7

Mild solution: 
2. Existence and uniqueness of global solutions

We first prove a result on the existence and uniqueness of non-negative global solutions of (1.2)-
(1.4) for initial data in V+. Putting

u := (b, f, n)t, F (u) := (F
1

(u), F
2

(u), F
3

(u))t.

The operator

A := �
0

@
Db 0 0

0 Df 0

0 0 Dn

1

A
�D

is positive and self-adjoint in H and has compact inverse. Consider an orthonormal basis in H1

0

(⌦)

consisting of eigenfunctions ej 2 H1

0

(⌦), j = 1, 2, ...., of the operator ��D corresponding to the
eigenvalues

0 < �
1

 �
2

 ....,�j �! 1 as j �! 1.

For u = (b, f, n)t 2 V , we have

u =

 1X

j=1

hb, ejiej,
1X

j=1

hf, ejiej,
1X

j=1

hn, ejiej
!t

,

Au =

 1X

j=1

Db�jhb, ejiej,
1X

j=1

Df�jhf, ejiej,
1X

j=1

Dn�jhn, ejiej
!t

.

Hence e�tA
: V ! V defined by

e�tAu :=

 1X

j=1

e�Db�jthb, ejiej,
1X

j=1

e�Df�jthf, ejiej,
1X

j=1

e�Dn�jthn, ejiej
!t

is an analytic semigroup in V generated by the operator A.
We denote the fractional power spaces associated to A by

X↵
= (D(A↵

), (., .)X↵
) , ↵ 2 R.

The inner product in X↵ is given by

(u, v)X↵
= (A↵u,A↵v)X0 , u, v 2 D(A↵

),

where

D(A↵
) =

8
><

>:
u =

0

@

P1
j=1

hb, ejiejP1
j=1

hf, ejiejP1
j=1

hn, ejiej

1

A
:

8
><

>:

P1
j=1

|Db�j|2↵|hb, eji|2 < 1
P1

j=1

|Df�j|2↵|hf, eji|2 < 1
P1

j=1

|Dn�j|2↵|hn, eji|2 < 1

9
>=

>;
,
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2. Existence and uniqueness of global solutions

We first prove a result on the existence and uniqueness of non-negative global solutions of (1.2)-
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Reminder

of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following
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Reminder

of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following
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and initial condition
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In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:

|u|L1 =

Z

⌦

udx.

L2(⌦) denotes the space of square integrable real valued functions defined on ⌦ with the norm |.|
corresponding to the scalar product defined

(u, v) =

Z

⌦

u.vdx
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2. Existence and uniqueness of global solutions

We first prove a result on the existence and uniqueness of non-negative global solutions of (1.2)-
(1.4) for initial data in V+. Putting

u := (b, f, n)t, F (u) := (F
1

(u), F
2

(u), F
3

(u))t.

The operator

A := �
0

@
Db 0 0

0 Df 0

0 0 Dn

1

A
�D

is positive and self-adjoint in H and has compact inverse. Consider an orthonormal basis in H1

0

(⌦)

consisting of eigenfunctions ej 2 H1

0

(⌦), j = 1, 2, ...., of the operator ��D corresponding to the
eigenvalues

0 < �
1

 �
2

 ....,�j �! 1 as j �! 1.
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.
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is an analytic semigroup in V generated by the operator A.
We denote the fractional power spaces associated to A by

X↵
= (D(A↵

), (., .)X↵
) , ↵ 2 R.

The inner product in X↵ is given by
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= (A↵u,A↵v)X0 , u, v 2 D(A↵

),

where

D(A↵
) =
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Reminder

of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

@b

@t
= Db�b+

kfb

Kb + f
+

knb

Kb + n
� µb� �b

@f

@t
= Df�f + rf

✓
1� f

K

◆
� kfb

Kb + f

@n

@t
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(2.4)

with the Dirichlet boundary condition

b(t, x) = f(t, x) = n(t, x) = 0 on [0,+1)⇥ @⌦ (2.5)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)

In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:

|u|L1 =

Z

⌦

udx.

L2(⌦) denotes the space of square integrable real valued functions defined on ⌦ with the norm |.|
corresponding to the scalar product defined

(u, v) =

Z

⌦

u.vdx

3

and

A↵u =

 1X

j=1

D↵
b �

↵
j hb, ejiej,

1X

j=1

D↵
f �

↵
j hf, ejiej,

1X

j=1

D↵
n�

↵
j hn, ejiej

!t

.

In these notations,

X1

= (D(��D))
3, X

1
2
= V , X0

= H, X� 1
2
= V 0.

The operator A in X0 can be extended or restricted, respectively, to a positive sectorial operator
in X↵ with domain X↵+1, ↵ 2 R, and the corresponding semigroups e�At, t � 0, in X↵ are
obtained from each other by natural restrictions and extensions. Moreover, if �  ↵ we have
e�At

(X�
) ⇢ X↵ and

||e�At||L(X�
;X↵

)

 c↵,�
t↵��

, t > 0, (2.1)

for some constant c↵,� � 0, where ||.||L(V ;W )

denotes the norm of a linear operator between the
normed spaces V and W (see, e.g., Section 2.1.1 in [28]).

We are now ready to prove the following existence theorem.

Theorem 1. For any initial value u
0

= (b
0

, f
0

, n
0

) 2 V+ given, there exists a unique non-negative
global mild solution u(t) = (b(t), f(t), n(t)) of the problem (1.2) - (1.4).

Proof. We first prove positivity preserving, i.e. non-negative initial data imply non-negative so-
lutions. Indeed, let u(t) = (b(t), f(t), n(t)) be a solution of (1.2) - (1.4) with initial condition
u
0

= (b
0

, f
0

, n
0

) 2 V+. Keeping in mind that
8
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✓
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K
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� kfb
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F
3
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Kb + n
.

Since Db, Df , Dn > 0 and F
1

(0, f, n) = 0, F
2

(b, 0, n) = 0, F
3

(b, f, 0) = �µb � 0 if b � 0, we
immediately get the desired result by using Theorem 2.1 in [7].

On the other hand, for all u = (b, f, n), u = (b, f , n) 2 B(0, R) ⇢ V+, where B(0, R) is the
ball centered at 0 with radius R in V+, we have

|F
1

(b, f, n)�F
1

(b, f , n)|2L2 =

����
kfb

Kb + f
� kfb

Kb + f
+

knb

Kb + n
� knb

Kb + n
� µ(b� b)� �(b� b)

����
2

L2

 c(k, µ, �)

 ����
kfb

Kb + f
� kfb

Kb + f

����
2

L2

+

����
knb

Kb + n
� knb

Kb + n

����
2

L2

+ (µ+ �)
��b� b

��2
L2

!
.
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[Temam, R. 1997])
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Existence of a global attractor

of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following

8
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>>>>>>>>>>>>:

@b

@t
= Db�b+

kfb

Kb + f
+

knb

Kb + n
� µb� �b

@f

@t
= Df�f + rf

✓
1� f

K

◆
� kfb

Kb + f

@n

@t
= Dn�n+ �µb� knb

Kb + n

(2.4)

with the Dirichlet boundary condition

b(t, x) = f(t, x) = n(t, x) = 0 on [0,+1)⇥ @⌦ (2.5)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)

In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:

|u|L1 =

Z

⌦

udx.

L2(⌦) denotes the space of square integrable real valued functions defined on ⌦ with the norm |.|
corresponding to the scalar product defined

(u, v) =

Z

⌦

u.vdx

3

The semigroup

4. Existence and estimate of the fractal dimension of a global

attractor

4.1. Existence of a global attractor

Theorem 2. The semigroup {S(t)}t2R+ associated with (2.4)� (2.6) processes a global attractor
in H+ provided

�1Db + µ+ � � 2k > 0

where �1 > 0 is the first eigenvalue of the operator ��D on the domain ⌦ with homogeneous
Dirichlet boundary condition.

Proof. (a) Energy estimates and the existence of an absorbing set. Firstly, we prove the existence
of an absorbing set in M+. We multiply the first equation of (2.4) by b, integrate over ⌦, using the
Green formula and (2.5), we obtain

1

2

d

dt
|b|2 +Db|rb|2 =

Z

⌦

kfb2

Kb + f
dx+

Z

⌦

knb2

Kb + n
dx� (µ+ �)

Z

⌦

b2dx

 (2k � (µ+ �))|b|2

and hence, by the Poincare0 inequality,

d

dt
|b|2 + 2(�1Db + µ+ � � 2k)|b|2  0

where �1 > 0 is the first eigenvalue of the operator ��D on the domain ⌦ with homogeneous
Dirichlet boundary condition.

This inequality yields, using Gronwall’s lemma,

|b(t)|2  |b(0)|2e��t,� = �2(�1Db + µ+ � � 2k). (4.1)

Now, we multiply the second equation of (2.4) by f , integrate over ⌦, using the Green formula and
(2.5), we obtain

1

2

d

dt
|f |2 +Df |rf |2 = r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx�
Z

⌦

kbf 2

Kb + f
dx

 r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx

and hence, again by the Poincare0 inequality,

1

2

d

dt
|f |2 + �1Df |f |2  r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx
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⌦
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with the homogeneous Dirichlet boundary

condition.

Let T ⇤ > 0, the singular Gronwall Lemma (see Lemma 1.2.9, []) now applies

||S(T ⇤)u� S(T ⇤)v||
X

1
2
 cp

T ⇤ ||u0 � v0||X0 .

Now, we assume that set B ⇢ X
1
2 is bounded. Let T > 0 and xn 2 B, tn � 0, n 2 N,

be sequences such that tn �! 1. Since orbits of bounded sets are bounded in X
1
2 , the set

{S(tn � T )xn : tn � T, n 2 N} is bounded in X
1
2 and consequently, there exists a subsequence

vk := S(tnk
� T )xnk

converging weakly to v in X
1
2 and strongly to v in X0. Apply Lemma 3 we

obtain
||S(T )vk � S(T )v||

X
1
2
 ||vk � v||X0 ,

which implies that S(T )vk = S(tnk
)vnk

converges to S(T )v in X
1
2 , and shows the asymptotic

compactness of the semigroup S(t), t � 0. In the other words, S(t) has a compact global attractor
A in X

1
2 , consequently, in H+.

4.2. Estimate of the dimension of the attractor

Theorem 4. The global attractor A has finite fractal dimension.

Proof. To prove the finite fractal dimension of the global attractor A we recall the following aux-
iliary result.

Lemma 5. Let V and W be Banach spaces such that the embedding V ,! W is dense and
compact, and let S(t), t � 0, be a semigroup in V . We assume A ⇢ V is a compact invariant set
and the semigroup satisfies the smoothing property: There exists T ⇤ > 0 and a constant  � 0
such that

||S(T ⇤)u� S(T ⇤)v||V  ||u� v||W , 8u, v 2 A.

Then, the fractal dimension of A in V is finite.

Proof. see in [], []

Now, Lemma 5 applied to the semigroup S(t), t � 0, with V = X
1
2 and W = X0 implies the

finite fractal dimension of A in X
1
2 , consequently, in H+.

5. Existence of local attractors

Theorem 6. The semigroup {S(t)}t2R+ associated with (2.4)� (2.6) processes local attractors in
H+.

13

Theorem 2
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of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

@b

@t
= Db�b+

kfb

Kb + f
+

knb

Kb + n
� µb� �b

@f

@t
= Df�f + rf

✓
1� f

K

◆
� kfb

Kb + f

@n

@t
= Dn�n+ �µb� knb

Kb + n

(2.4)

with the Dirichlet boundary condition

b(t, x) = f(t, x) = n(t, x) = 0 on [0,+1)⇥ @⌦ (2.5)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)

In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:

|u|L1 =

Z

⌦

udx.

L2(⌦) denotes the space of square integrable real valued functions defined on ⌦ with the norm |.|
corresponding to the scalar product defined

(u, v) =

Z

⌦

u.vdx

3

Sketch of proof

Existence of a global attractor

Therefore,
|F (u)� F (u)|2  c(R, k,Kb, µ, �)||u� u||2, (2.2)

for all u, v 2 V+ such that kuk, kvk  R, i.e. F = (F
1

, F
2

, F
3

) : X1/2
= V+ �! X = H+ is

locally Lipschitz. This combining with the fact that A is a sectorial operator in X lead to the fact
that there is a unique non-negative local mild solution of (1.2) - (1.4) given by

u(t) = e�Atu
0

+

Z t

0

e�A(t�s)F (u(s))ds. (2.3)

Moreover, this solution depends continuously on the initial data.
Finally, thanks to the priori estimates of solutions u(t) = (b(t), f(t), n(t)) (see part a) in the

the proof in Theorem 2 below), the non-negative solutions of (1.2) - (1.4) are globally defined.

3. Existence of a finite-dimensional global attractor

By Theorem 1, we can define the continuous semigroup S(t) : V+ ! V+, t � 0, associated with
the problem (1.2) - (1.4) as follows

S(t)u
0

:= u(t) = (b(t), f(t), n(t)),

where u(·) is the unique mild solution to problem (1.2) - (1.4) with the initial datum u
0

.

Theorem 2. The semigroup {S(t)}t�0

associated with problem (1.2) - (1.4) possesses a finite-
dimensional global attractor in V+ provided

�
1

Db + µ+ � � 2k > 0, (3.1)

where �
1

> 0 is the first eigenvalue of the operator ��D on the domain ⌦ with the homogeneous
Dirichlet boundary condition.

Proof. (a) Existence of an absorbing set in V+. Firstly, we prove the existence of an absorbing set
in H+. We multiply the first equation of (1.2) by b, integrate over ⌦, then use the Green formula
and (1.3), to obtain

1

2

d

dt
|b|2L2 +Db|rb|2L2 =

Z

⌦

kfb2

Kb + f
dx+

Z

⌦

knb2

Kb + n
dx� (µ+ �)

Z

⌦

b2dx

 (2k � (µ+ �))|b|2L2 ,

and hence, by the Poincaré inequality,

d

dt
|b|2L2 + 2(�

1

Db + µ+ � � 2k)|b|2L2  0.

7

This inequality yields, using Gronwall’s lemma,

|b(t)|2L2  |b(0)|2L2e��t,� = �2(�
1

Db + µ+ � � 2k). (3.2)

Now, multiplying the second equation of (1.2) by f , integrating over ⌦, using the Green formula
and (1.3), we obtain

1

2

d

dt
|f |2L2 +Df |rf |2L2 = r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx�
Z

⌦

kbf 2

Kb + f
dx

 r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx,

and hence, again by the Poincaré inequality,

1

2

d

dt
|f |2L2 + �

1

Df |f |2L2  r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx.

Using Cauchy’s inequality, we have

f 3

2

+

f 3

2

+ 4

✓
K

3

◆
3

� Kf 2,

or

�f 3  �Kf 2

+ 4

✓
K

3

◆
3

.

Hence,
1

2

d

dt
|f |2L2 + �

1

Df |f |2L2  4rK2

27

yields, using Gronwall’s lemma,

|f(t)|2L2 
�|f(0)|2L2 � c

1

�
e��1Df t

+ c
1

, c
1

=

4rK2

27�
1

Df

. (3.3)

Finally, multiplying the second equation of (1.2) by n, integrating over ⌦, using the Green formula
and (1.3), we obtain

1

2

d

dt
|n|2L2 +Dn|rn|2L2 = �µ

Z

⌦

bndx�
Z

⌦

kbn2

Kb + n
dx

 �µ

Z

⌦

bndx

and hence, again by the Poincaré inequality,

1

2

d

dt
|n|2L2 + �

1

Dn|n|2L2  �µ

Z

⌦

bndx

8

-)

-)

yields, using Cauchy’s inequality,

1

2

d

dt
|n|2L2 + �

1

Dn|n|2L2  �µ

0

BB@
�
1

Dn

2�µ
|n|2L2 +

|b|2L2

2�
1

Dn

�µ

1

CCA .

Using (3.2), it implies that

d

dt
|n|2L2 + �

1

Dn|n|2L2  �2µ2

�
1

Dn

|b|2L2  c
2

|b(0)|2L2e��t, c
2

=

�2µ2

�
1

Dn

.

Using Gronwall’s lemma, we get

|n(t)|2L2 
✓
|n(0)|2L2 � c

2

�
1

Dn � �
|b(0)|2L2

◆
e��1Dnt

+

c
2

�
1

Dn � �
|b(0)|2L2e��t. (3.4)

From (3.2)-(3.4) and the condition �
1

Db + µ + � � 2k > 0, it implies that the ball BH+
(0, R),

(R = 2c
1

, for instance) is a bounded absorbing set in H+.
Now, we prove the existence of an absorbing set in V+. We multiply the first equation in (1.2)

by ��b and integrate over ⌦. Thanks to the Green formula, this gives the energy-type relation

1

2

d

dt
||b||2H1

0
+Db|�b|2L2 = �

Z

⌦

kfb�b

Kb + f
dx�

Z

⌦

knb�b

Kb + n
dx+ (µ+ �)

Z

⌦

b�bdx

 (2k + µ+ �)

Z

⌦

b|�b|dx

yields, using Cauchy’s inequality,

1

2

d

dt
||b||2H1

0
+Db|�b|2L2  (2k + µ+ �)

✓
Db

(2k + µ+ �)
|�b|2L2 +

(2k + µ+ �)

4Db

|b|2L2

◆

which implies

d

dt
||b||2H1

0
 (2k + µ+ �)2

4Db

|b|2L2  (2k + µ+ �)2

4Db

R2, 8t � T. (3.5)

In addition, the following estimate is obtained in part (a)

1

2

d

dt
|b|2L2 +Db|rb|2L2  (2k � (µ+ �))|b|2L2 .

By integrating between t and t+ 1, t � T , we have
Z t+1

t

||b||2H1
0
ds  2(2k � µ� �)

2Db

Z t+1

t

|b|2L2ds+
|b(t)|2L2

2Db

 2(2k � µ� �)

2Db

R2

+

R2

2Db

.

9

+)

This inequality yields, using Gronwall’s lemma,

|b(t)|2L2  |b(0)|2L2e��t,� = �2(�
1

Db + µ+ � � 2k). (3.2)

Now, multiplying the second equation of (1.2) by f , integrating over ⌦, using the Green formula
and (1.3), we obtain

1

2

d

dt
|f |2L2 +Df |rf |2L2 = r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx�
Z

⌦

kbf 2

Kb + f
dx

 r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx,

and hence, again by the Poincaré inequality,
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2

=

�2µ2

�
1

Dn

.

Using Gronwall’s lemma, we get

|n(t)|2L2 
✓
|n(0)|2L2 � c

2

�
1

Dn � �
|b(0)|2L2

◆
e��1Dnt

+

c
2

�
1

Dn � �
|b(0)|2L2e��t. (3.4)

From (3.2)-(3.4) and the condition �
1

Db + µ + � � 2k > 0, it implies that the ball BH+
(0, R),

(R = 2c
1

, for instance) is a bounded absorbing set in H+.
Now, we prove the existence of an absorbing set in V+. We multiply the first equation in (1.2)

by ��b and integrate over ⌦. Thanks to the Green formula, this gives the energy-type relation

1

2

d

dt
||b||2H1

0
+Db|�b|2L2 = �

Z

⌦

kfb�b

Kb + f
dx�

Z

⌦

knb�b

Kb + n
dx+ (µ+ �)

Z

⌦

b�bdx

 (2k + µ+ �)

Z

⌦

b|�b|dx

yields, using Cauchy’s inequality,

1

2

d

dt
||b||2H1

0
+Db|�b|2L2  (2k + µ+ �)

✓
Db

(2k + µ+ �)
|�b|2L2 +

(2k + µ+ �)

4Db

|b|2L2

◆

which implies

d

dt
||b||2H1

0
 (2k + µ+ �)2

4Db

|b|2L2  (2k + µ+ �)2

4Db

R2, 8t � T. (3.5)

In addition, the following estimate is obtained in part (a)

1

2

d

dt
|b|2L2 +Db|rb|2L2  (2k � (µ+ �))|b|2L2 .

By integrating between t and t+ 1, t � T , we have
Z t+1

t

||b||2H1
0
ds  2(2k � µ� �)

2Db

Z t+1

t

|b|2L2ds+
|b(t)|2L2

2Db

 2(2k � µ� �)

2Db

R2

+

R2

2Db

.
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of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

@b

@t
= Db�b+

kfb

Kb + f
+

knb

Kb + n
� µb� �b

@f

@t
= Df�f + rf

✓
1� f

K

◆
� kfb

Kb + f

@n

@t
= Dn�n+ �µb� knb

Kb + n

(2.4)

with the Dirichlet boundary condition

b(t, x) = f(t, x) = n(t, x) = 0 on [0,+1)⇥ @⌦ (2.5)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)

In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:

|u|L1 =

Z

⌦

udx.

L2(⌦) denotes the space of square integrable real valued functions defined on ⌦ with the norm |.|
corresponding to the scalar product defined

(u, v) =

Z

⌦

u.vdx

3

Sketch of proof

Existence of a global attractor

Therefore,
|F (u)� F (u)|2  c(R, k,Kb, µ, �)||u� u||2, (2.2)

for all u, v 2 V+ such that kuk, kvk  R, i.e. F = (F
1

, F
2

, F
3

) : X1/2
= V+ �! X = H+ is

locally Lipschitz. This combining with the fact that A is a sectorial operator in X lead to the fact
that there is a unique non-negative local mild solution of (1.2) - (1.4) given by

u(t) = e�Atu
0

+

Z t

0

e�A(t�s)F (u(s))ds. (2.3)

Moreover, this solution depends continuously on the initial data.
Finally, thanks to the priori estimates of solutions u(t) = (b(t), f(t), n(t)) (see part a) in the

the proof in Theorem 2 below), the non-negative solutions of (1.2) - (1.4) are globally defined.

3. Existence of a finite-dimensional global attractor

By Theorem 1, we can define the continuous semigroup S(t) : V+ ! V+, t � 0, associated with
the problem (1.2) - (1.4) as follows

S(t)u
0

:= u(t) = (b(t), f(t), n(t)),

where u(·) is the unique mild solution to problem (1.2) - (1.4) with the initial datum u
0

.

Theorem 2. The semigroup {S(t)}t�0

associated with problem (1.2) - (1.4) possesses a finite-
dimensional global attractor in V+ provided

�
1

Db + µ+ � � 2k > 0, (3.1)

where �
1

> 0 is the first eigenvalue of the operator ��D on the domain ⌦ with the homogeneous
Dirichlet boundary condition.

Proof. (a) Existence of an absorbing set in V+. Firstly, we prove the existence of an absorbing set
in H+. We multiply the first equation of (1.2) by b, integrate over ⌦, then use the Green formula
and (1.3), to obtain

1

2

d

dt
|b|2L2 +Db|rb|2L2 =

Z

⌦

kfb2

Kb + f
dx+

Z

⌦

knb2

Kb + n
dx� (µ+ �)

Z

⌦

b2dx

 (2k � (µ+ �))|b|2L2 ,

and hence, by the Poincaré inequality,

d

dt
|b|2L2 + 2(�

1

Db + µ+ � � 2k)|b|2L2  0.

7

-)

-)

+)

-)

yields, using Cauchy’s inequality,

1

2

d

dt
|n|2L2 + �

1

Dn|n|2L2  �µ

0

BB@
�
1

Dn

2�µ
|n|2L2 +

|b|2L2

2�
1

Dn

�µ

1

CCA .

Using (3.2), it implies that

d

dt
|n|2L2 + �

1

Dn|n|2L2  �2µ2

�
1

Dn

|b|2L2  c
2

|b(0)|2L2e��t, c
2

=

�2µ2

�
1

Dn

.

Using Gronwall’s lemma, we get

|n(t)|2L2 
✓
|n(0)|2L2 � c

2

�
1

Dn � �
|b(0)|2L2

◆
e��1Dnt

+

c
2

�
1

Dn � �
|b(0)|2L2e��t. (3.4)

From (3.2)-(3.4) and the condition �
1

Db + µ + � � 2k > 0, it implies that the ball BH+
(0, R),

(R = 2c
1

, for instance) is a bounded absorbing set in H+.
Now, we prove the existence of an absorbing set in V+. We multiply the first equation in (1.2)

by ��b and integrate over ⌦. Thanks to the Green formula, this gives the energy-type relation

1

2

d

dt
||b||2H1

0
+Db|�b|2L2 = �

Z

⌦

kfb�b

Kb + f
dx�

Z

⌦

knb�b

Kb + n
dx+ (µ+ �)

Z

⌦

b�bdx

 (2k + µ+ �)

Z

⌦

b|�b|dx

yields, using Cauchy’s inequality,

1

2

d

dt
||b||2H1

0
+Db|�b|2L2  (2k + µ+ �)

✓
Db

(2k + µ+ �)
|�b|2L2 +

(2k + µ+ �)

4Db

|b|2L2

◆

which implies

d

dt
||b||2H1

0
 (2k + µ+ �)2

4Db

|b|2L2  (2k + µ+ �)2

4Db

R2, 8t � T. (3.5)

In addition, the following estimate is obtained in part (a)

1

2

d

dt
|b|2L2 +Db|rb|2L2  (2k � (µ+ �))|b|2L2 .

By integrating between t and t+ 1, t � T , we have
Z t+1

t

||b||2H1
0
ds  2(2k � µ� �)

2Db

Z t+1

t

|b|2L2ds+
|b(t)|2L2

2Db

 2(2k � µ� �)

2Db

R2

+

R2

2Db

.

9

We now apply the uniform Gronwall inequality to (3.5) to conclude that if b
0

2 B(0, R) then

||b(t)||2H1
0
 c

3

, c
3

=

2(2k � µ� �)

2Db

R2

+

R2

2Db

+

(2k + µ+ �)2

4Db

R2, 8t � T + 1. (3.6)

Now, we multiply the second equation in (1.2) by ��f and integrate over ⌦. Thanks to the Green
formula, this gives the energy-type relation

1

2

d

dt
||f ||2H1

0
+Df |�f |2 = �r

Z

⌦

f�fdx+

r

K

Z

⌦

f 2

�fdx+

Z

⌦

kfb�f

Kb + f
dx

= r||f ||2H1
0
� r

K

Z

⌦

2f |rf |2dx+

Z

⌦

kfb�f

Kb + f
dx

 r||f ||2H1
0
+ k

Z

⌦

b|�f |dx

 r||f ||2H1
0
+ k

Z

⌦

|rb||rf |dx

and hence, again by the Poincaré inequality,

d

dt
||f ||2H1

0
+ 2�

1

Df ||f ||2H1
0
 2r||f ||2H1

0
+ 2k

Z

⌦

|rb||rf |dx

yields, using Cauchy’s inequality,

d

dt
||f ||2H1

0
 2r||f ||2H1

0
+

k2

2�
1

Df

||b||2H1
0
 2r||f ||2H1

0
+ c

4

, c
4

=

k2

2�
1

Df

c
3

, 8t � T + 1. (3.7)

In addition, according to the proof of part (a), we have the following estimate

d

dt
|f |2L2 + 2Df ||f ||2H1

0
 8rK2

27

.

By integrating between t and t+ 1, t � T + 1, we have
Z t+1

t

||f ||2H1
0
ds  4rK2

27Df

+

|f(t)|2L2

2Df

 c
5

, c
5

=

4rK2

27Df

+

R2

2Df

, 8t � T + 1.

Applying the uniform Gronwall lemma to (3.7), we conclude that if f
0

2 B(0, R) then

||f(t)||2H1
0
 c

6

, c
6

= (c
4

+ c
5

)e2r, 8t � T + 2. (3.8)

Finally, we multiply the third equation in (1.2) by ��n and integrate over ⌦. Thanks to the Green
formula, this gives the energy-type relation

1

2

d

dt
||n||2H1

0
+Dn|�n|2L2 = ��µ

Z

⌦

b�ndx+

Z

⌦

knb�n

Kb + n
dx

 (k + �µ)

Z

⌦

b|�n|dx
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We now apply the uniform Gronwall inequality to (3.5) to conclude that if b
0

2 B(0, R) then

||b(t)||2H1
0
 c

3

, c
3

=

2(2k � µ� �)

2Db

R2

+

R2

2Db

+

(2k + µ+ �)2

4Db

R2, 8t � T + 1. (3.6)

Now, we multiply the second equation in (1.2) by ��f and integrate over ⌦. Thanks to the Green
formula, this gives the energy-type relation

1

2

d

dt
||f ||2H1

0
+Df |�f |2 = �r

Z

⌦

f�fdx+

r

K

Z

⌦

f 2

�fdx+

Z

⌦

kfb�f

Kb + f
dx

= r||f ||2H1
0
� r

K

Z

⌦

2f |rf |2dx+

Z

⌦

kfb�f

Kb + f
dx

 r||f ||2H1
0
+ k

Z

⌦

b|�f |dx

 r||f ||2H1
0
+ k

Z

⌦

|rb||rf |dx

and hence, again by the Poincaré inequality,

d

dt
||f ||2H1

0
+ 2�

1

Df ||f ||2H1
0
 2r||f ||2H1

0
+ 2k

Z

⌦

|rb||rf |dx

yields, using Cauchy’s inequality,

d

dt
||f ||2H1

0
 2r||f ||2H1

0
+

k2

2�
1

Df

||b||2H1
0
 2r||f ||2H1

0
+ c

4

, c
4

=

k2

2�
1

Df

c
3

, 8t � T + 1. (3.7)

In addition, according to the proof of part (a), we have the following estimate

d

dt
|f |2L2 + 2Df ||f ||2H1

0
 8rK2

27

.

By integrating between t and t+ 1, t � T + 1, we have
Z t+1

t

||f ||2H1
0
ds  4rK2

27Df

+

|f(t)|2L2

2Df

 c
5

, c
5

=

4rK2

27Df

+

R2

2Df

, 8t � T + 1.

Applying the uniform Gronwall lemma to (3.7), we conclude that if f
0

2 B(0, R) then

||f(t)||2H1
0
 c

6

, c
6

= (c
4

+ c
5

)e2r, 8t � T + 2. (3.8)

Finally, we multiply the third equation in (1.2) by ��n and integrate over ⌦. Thanks to the Green
formula, this gives the energy-type relation

1

2

d

dt
||n||2H1

0
+Dn|�n|2L2 = ��µ

Z

⌦

b�ndx+

Z

⌦

knb�n

Kb + n
dx

 (k + �µ)

Z

⌦

b|�n|dx

10

yields, using Cauchy’s inequality,

1

2

d

dt
||n||2H1

0
+Dn|�n|2L2  (k + �µ)

✓
Dn

(k + �µ)
|�n|2L2 +

(k + �µ)

4Dn

|b|2L2

◆

which yields
d

dt
||n||2H1

0
 c

7

, c
7

=

(k + �µ)2

4Dn

R2, 8t � T. (3.9)

In addition, according to the proof of part (a), we have the following estimate
1

2

d

dt
|n|2L2 +Dn||n||2H1

0
 �µR2, 8t � T.

By integrating between t and t+ 1, t � T , we have
Z t+1

t

||n||2H1
0
ds  �µR2

Dn

+

1

2Dn
|n(t)|2L2

 c
8

, c
8

=

�µR2

Dn

+

R2

2Dn
, 8t � T.

Applying the uniform Gronwall lemma to (3.9), we conclude that if f
0

2 B(0, R) then

||n(t)||2H1
0
 c

9

, c
9

= c
8

+ c
7

, 8t � T + 1. (3.10)

We choose R
max

= max{2c
3

, 2c
6

, 2c
9

}, it implies that BV+
(0, R

max

) is a bounded absorbing set in
V+ for the semigroup S(t).
(b) Asymptotic compactness of the semigroup. To prove the asymptotic compactness of the semi-
group we need the following auxiliary result.

Lemma 3. Let B ⇢ X
1
2 be a bounded set. Then, for every T ⇤ > 0 there exists a constant  such

that
||S(T ⇤

)u� S(T ⇤
)v||

X
1
2
 ||u� v||X0 , 8u, v 2 B.

Proof. Given initial data u
0

, v
0

2 B, the corresponding solutions u(t) = S(t)u
0

and v(t) = S(t)v
0

satisfy the variation of constants formula (2.3). By (2.2) and (2.1) we obtain for the difference

||S(t)u
0

� S(t)v
0

||
X

1
2
||e�A

1
2 t||L(X0,X

1
2
)

||u
0

� v
0

||X0

+

Z t

0

||e�A
1
2
(t�s)||L(X0,X

1
2
)

||F (u(s))� F (v(s))||X0ds

c

 
1p
t
||u

0

� v
0

||X0
+

Z t

0

1

(t� s)
1
2

||u(s)� v(s)||
X

1
2
ds

!
.

Let T ⇤ > 0, applying the singular Gronwall lemma (see [4, Lemma 1.2.9]), we have

||S(T ⇤
)u� S(T ⇤

)v||
X

1
2
 cp

T ⇤ ||u0

� v
0

||X0 .
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yields, using Cauchy’s inequality,

1

2

d

dt
||n||2H1

0
+Dn|�n|2L2  (k + �µ)

✓
Dn

(k + �µ)
|�n|2L2 +

(k + �µ)

4Dn

|b|2L2

◆

which yields
d

dt
||n||2H1

0
 c

7

, c
7

=

(k + �µ)2

4Dn

R2, 8t � T. (3.9)

In addition, according to the proof of part (a), we have the following estimate
1

2

d

dt
|n|2L2 +Dn||n||2H1

0
 �µR2, 8t � T.

By integrating between t and t+ 1, t � T , we have
Z t+1

t

||n||2H1
0
ds  �µR2

Dn

+

1

2Dn
|n(t)|2L2

 c
8

, c
8

=

�µR2

Dn

+

R2

2Dn
, 8t � T.

Applying the uniform Gronwall lemma to (3.9), we conclude that if f
0

2 B(0, R) then

||n(t)||2H1
0
 c

9

, c
9

= c
8

+ c
7

, 8t � T + 1. (3.10)

We choose R
max

= max{2c
3

, 2c
6

, 2c
9

}, it implies that BV+
(0, R

max

) is a bounded absorbing set in
V+ for the semigroup S(t).
(b) Asymptotic compactness of the semigroup. To prove the asymptotic compactness of the semi-
group we need the following auxiliary result.

Lemma 3. Let B ⇢ X
1
2 be a bounded set. Then, for every T ⇤ > 0 there exists a constant  such

that
||S(T ⇤

)u� S(T ⇤
)v||

X
1
2
 ||u� v||X0 , 8u, v 2 B.

Proof. Given initial data u
0

, v
0

2 B, the corresponding solutions u(t) = S(t)u
0

and v(t) = S(t)v
0

satisfy the variation of constants formula (2.3). By (2.2) and (2.1) we obtain for the difference

||S(t)u
0

� S(t)v
0

||
X

1
2
||e�A

1
2 t||L(X0,X

1
2
)

||u
0

� v
0

||X0

+

Z t

0

||e�A
1
2
(t�s)||L(X0,X

1
2
)

||F (u(s))� F (v(s))||X0ds

c

 
1p
t
||u

0

� v
0

||X0
+

Z t

0

1

(t� s)
1
2

||u(s)� v(s)||
X

1
2
ds

!
.

Let T ⇤ > 0, applying the singular Gronwall lemma (see [4, Lemma 1.2.9]), we have

||S(T ⇤
)u� S(T ⇤

)v||
X

1
2
 cp

T ⇤ ||u0

� v
0

||X0 .
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of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

@b

@t
= Db�b+

kfb

Kb + f
+

knb

Kb + n
� µb� �b

@f

@t
= Df�f + rf

✓
1� f

K

◆
� kfb

Kb + f

@n

@t
= Dn�n+ �µb� knb

Kb + n

(2.4)

with the Dirichlet boundary condition

b(t, x) = f(t, x) = n(t, x) = 0 on [0,+1)⇥ @⌦ (2.5)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)

In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:

|u|L1 =

Z

⌦

udx.

L2(⌦) denotes the space of square integrable real valued functions defined on ⌦ with the norm |.|
corresponding to the scalar product defined

(u, v) =

Z

⌦

u.vdx

3

Sketch of proof

Existence of a global attractor

Therefore,
|F (u)� F (u)|2  c(R, k,Kb, µ, �)||u� u||2, (2.2)

for all u, v 2 V+ such that kuk, kvk  R, i.e. F = (F
1

, F
2

, F
3

) : X1/2
= V+ �! X = H+ is

locally Lipschitz. This combining with the fact that A is a sectorial operator in X lead to the fact
that there is a unique non-negative local mild solution of (1.2) - (1.4) given by

u(t) = e�Atu
0

+

Z t

0

e�A(t�s)F (u(s))ds. (2.3)

Moreover, this solution depends continuously on the initial data.
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of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

@b

@t
= Db�b+

kfb

Kb + f
+

knb

Kb + n
� µb� �b

@f

@t
= Df�f + rf

✓
1� f

K

◆
� kfb

Kb + f

@n

@t
= Dn�n+ �µb� knb

Kb + n

(2.4)

with the Dirichlet boundary condition

b(t, x) = f(t, x) = n(t, x) = 0 on [0,+1)⇥ @⌦ (2.5)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)

In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:

|u|L1 =

Z

⌦

udx.

L2(⌦) denotes the space of square integrable real valued functions defined on ⌦ with the norm |.|
corresponding to the scalar product defined

(u, v) =

Z

⌦

u.vdx

3

Sketch of proof

Existence of a global attractor

Now, we assume that the set B ⇢ X
1
2 is bounded. Let T > 0 and xn 2 B, tn � 0, n 2 N,

be sequences such that tn �! 1. Since orbits of bounded sets are bounded in X
1
2 , the set

{S(tn � T )xn : tn � T, n 2 N} is bounded in X
1
2 and consequently, there exists a subsequence

vk := S(tnk
� T )xnk

converging weakly to v in X
1
2 and strongly to v in X0. Applying Lemma 3

we obtain
||S(T )vk � S(T )v||

X
1
2
 ||vk � v||X0 ,

which implies that S(T )vk = S(tnk
)vnk

converges to S(T )v in X
1
2 , and shows the asymptotic

compactness of the semigroup S(t), t � 0. In the other words, S(t) has a compact global attractor
A in X

1
2 or else in V+.

(c) Fractal dimension estimates of the global attractor. We will use the following result.

Lemma 4 ([8]). Let V and W be Banach spaces such that the embedding V ,! W is dense and
compact, and let S(t), t � 0, be a semigroup in V . We assume A ⇢ V is a compact invariant set
and the semigroup satisfies the smoothing property: There exist T ⇤ > 0 and a constant  � 0 such
that

||S(T ⇤
)u� S(T ⇤

)v||V  ||u� v||W , 8u, v 2 A.

Then, the fractal dimension of A in V is finite.

We now can apply Lemma 4 to the semigroup S(t), t � 0, with V = X
1
2 and W = X0 to get

the finiteness of the fractal dimension of the global attractor.

4. Local ultimate boundedness of global solutions

In the previous section, under the condition (3.1), we have in particular showed that there exists a
ball in V+ such that all solutions to (1.2)-(1.4) will enter this ball as the time t is large enough. In
this section, without this condition, we will prove that each solution u to (1.2)-(1.4) will eventually
enter a ball with radius depending only on the norm of initial data u

0

. In other words, we prove the
local ultimate boundedness of global solutions or the existence of local absorbing sets.

Theorem 5. The semigroup {S(t)}t�0

associated with (1.2)-(1.4) possesses local absorbing sets
in V+.

Proof. We first prove that |b|L1
+ |f |L1

+ |n|L1  c(|b
0

|L1 , |f
0

|L1 , |n
0

|L1
). Indeed, integrating over

⌦ three equations of (1.2) and summing up, we obtain

d

dt
|b+ f + n|L1 �

Z

⌦

(Db�b+Df�f +Dn�n)dx = (�µ� µ� �)|b|L1
+ r

Z

⌦

fdx� r

K

Z

⌦

f 2dx

 r

Z

⌦

fdx� r

K

Z

⌦

f 2dx.

In addition, using Stokes’ formula, we have
Z

⌦

(Db�b+Df�f +Dn�n)dx =

Z

@⌦

✓
@b

@⌫
+

@f

@⌫
+

@n

@⌫

◆
ds  0,
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✓
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◆
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⌦
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Now, we assume that the set B ⇢ X
1
2 is bounded. Let T > 0 and xn 2 B, tn � 0, n 2 N,

be sequences such that tn �! 1. Since orbits of bounded sets are bounded in X
1
2 , the set

{S(tn � T )xn : tn � T, n 2 N} is bounded in X
1
2 and consequently, there exists a subsequence

vk := S(tnk
� T )xnk

converging weakly to v in X
1
2 and strongly to v in X0. Applying Lemma 3

we obtain
||S(T )vk � S(T )v||

X
1
2
 ||vk � v||X0 ,

which implies that S(T )vk = S(tnk
)vnk

converges to S(T )v in X
1
2 , and shows the asymptotic

compactness of the semigroup S(t), t � 0. In the other words, S(t) has a compact global attractor
A in X

1
2 or else in V+.

(c) Fractal dimension estimates of the global attractor. We will use the following result.

Lemma 4 ([8]). Let V and W be Banach spaces such that the embedding V ,! W is dense and
compact, and let S(t), t � 0, be a semigroup in V . We assume A ⇢ V is a compact invariant set
and the semigroup satisfies the smoothing property: There exist T ⇤ > 0 and a constant  � 0 such
that

||S(T ⇤
)u� S(T ⇤

)v||V  ||u� v||W , 8u, v 2 A.

Then, the fractal dimension of A in V is finite.

We now can apply Lemma 4 to the semigroup S(t), t � 0, with V = X
1
2 and W = X0 to get

the finiteness of the fractal dimension of the global attractor.

4. Local ultimate boundedness of global solutions

In the previous section, under the condition (3.1), we have in particular showed that there exists a
ball in V+ such that all solutions to (1.2)-(1.4) will enter this ball as the time t is large enough. In
this section, without this condition, we will prove that each solution u to (1.2)-(1.4) will eventually
enter a ball with radius depending only on the norm of initial data u

0

. In other words, we prove the
local ultimate boundedness of global solutions or the existence of local absorbing sets.

Theorem 5. The semigroup {S(t)}t�0

associated with (1.2)-(1.4) possesses local absorbing sets
in V+.

Proof. We first prove that |b|L1
+ |f |L1

+ |n|L1  c(|b
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0
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0

|L1
). Indeed, integrating over
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=> asymptotic compactness of the semigroup.
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Fractal dimension estimates 

of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

@b

@t
= Db�b+

kfb

Kb + f
+

knb

Kb + n
� µb� �b

@f

@t
= Df�f + rf

✓
1� f

K

◆
� kfb

Kb + f

@n

@t
= Dn�n+ �µb� knb

Kb + n

(2.4)

with the Dirichlet boundary condition

b(t, x) = f(t, x) = n(t, x) = 0 on [0,+1)⇥ @⌦ (2.5)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)

In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:

|u|L1 =

Z

⌦

udx.

L2(⌦) denotes the space of square integrable real valued functions defined on ⌦ with the norm |.|
corresponding to the scalar product defined

(u, v) =

Z

⌦

u.vdx

3

Fractal dimension estimates of the global attractor

The global attractor 

Let T ⇤ > 0, the singular Gronwall Lemma (see Lemma 1.2.9, []) now applies

||S(T ⇤)u� S(T ⇤)v||
X

1
2
 cp

T ⇤ ||u0 � v0||X0 .

Now, we assume that set B ⇢ X
1
2 is bounded. Let T > 0 and xn 2 B, tn � 0, n 2 N,

be sequences such that tn �! 1. Since orbits of bounded sets are bounded in X
1
2 , the set

{S(tn � T )xn : tn � T, n 2 N} is bounded in X
1
2 and consequently, there exists a subsequence

vk := S(tnk
� T )xnk

converging weakly to v in X
1
2 and strongly to v in X0. Apply Lemma 3 we

obtain
||S(T )vk � S(T )v||

X
1
2
 ||vk � v||X0 ,

which implies that S(T )vk = S(tnk
)vnk

converges to S(T )v in X
1
2 , and shows the asymptotic

compactness of the semigroup S(t), t � 0. In the other words, S(t) has a compact global attractor
A in X

1
2 , consequently, in H+.

4.2. Estimate of the dimension of the attractor

Theorem 4. The global attractor A has finite fractal dimension.

Proof. To prove the finite fractal dimension of the global attractor A we recall the following aux-
iliary result.

Lemma 5. Let V and W be Banach spaces such that the embedding V ,! W is dense and
compact, and let S(t), t � 0, be a semigroup in V . We assume A ⇢ V is a compact invariant set
and the semigroup satisfies the smoothing property: There exists T ⇤ > 0 and a constant  � 0
such that

||S(T ⇤)u� S(T ⇤)v||V  ||u� v||W , 8u, v 2 A.

Then, the fractal dimension of A in V is finite.

Proof. see in [], []

Now, Lemma 5 applied to the semigroup S(t), t � 0, with V = X
1
2 and W = X0 implies the

finite fractal dimension of A in X
1
2 , consequently, in H+.

5. Existence of local attractors

Theorem 6. The semigroup {S(t)}t2R+ associated with (2.4)� (2.6) processes local attractors in
H+.
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has finite fractal dimension

Existence of a global attractor
Now, we assume that the set B ⇢ X

1
2 is bounded. Let T > 0 and xn 2 B, tn � 0, n 2 N,

be sequences such that tn �! 1. Since orbits of bounded sets are bounded in X
1
2 , the set

{S(tn � T )xn : tn � T, n 2 N} is bounded in X
1
2 and consequently, there exists a subsequence

vk := S(tnk
� T )xnk

converging weakly to v in X
1
2 and strongly to v in X0. Applying Lemma 3

we obtain
||S(T )vk � S(T )v||

X
1
2
 ||vk � v||X0 ,

which implies that S(T )vk = S(tnk
)vnk

converges to S(T )v in X
1
2 , and shows the asymptotic

compactness of the semigroup S(t), t � 0. In the other words, S(t) has a compact global attractor
A in X

1
2 or else in V+.

(c) Fractal dimension estimates of the global attractor. We will use the following result.

Lemma 4 ([8]). Let V and W be Banach spaces such that the embedding V ,! W is dense and
compact, and let S(t), t � 0, be a semigroup in V . We assume A ⇢ V is a compact invariant set
and the semigroup satisfies the smoothing property: There exist T ⇤ > 0 and a constant  � 0 such
that

||S(T ⇤
)u� S(T ⇤

)v||V  ||u� v||W , 8u, v 2 A.

Then, the fractal dimension of A in V is finite.

We now can apply Lemma 4 to the semigroup S(t), t � 0, with V = X
1
2 and W = X0 to get

the finiteness of the fractal dimension of the global attractor.

4. Local ultimate boundedness of global solutions

In the previous section, under the condition (3.1), we have in particular showed that there exists a
ball in V+ such that all solutions to (1.2)-(1.4) will enter this ball as the time t is large enough. In
this section, without this condition, we will prove that each solution u to (1.2)-(1.4) will eventually
enter a ball with radius depending only on the norm of initial data u

0

. In other words, we prove the
local ultimate boundedness of global solutions or the existence of local absorbing sets.

Theorem 5. The semigroup {S(t)}t�0

associated with (1.2)-(1.4) possesses local absorbing sets
in V+.

Proof. We first prove that |b|L1
+ |f |L1

+ |n|L1  c(|b
0

|L1 , |f
0

|L1 , |n
0

|L1
). Indeed, integrating over

⌦ three equations of (1.2) and summing up, we obtain

d

dt
|b+ f + n|L1 �

Z

⌦

(Db�b+Df�f +Dn�n)dx = (�µ� µ� �)|b|L1
+ r

Z

⌦

fdx� r

K

Z

⌦

f 2dx

 r

Z

⌦

fdx� r

K

Z

⌦

f 2dx.

In addition, using Stokes’ formula, we have
Z

⌦

(Db�b+Df�f +Dn�n)dx =

Z

@⌦
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Local ultimate boundedness of global solutions

of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following
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1� f

K
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� kfb

Kb + f

@n

@t
= Dn�n+ �µb� knb

Kb + n

(2.4)

with the Dirichlet boundary condition

b(t, x) = f(t, x) = n(t, x) = 0 on [0,+1)⇥ @⌦ (2.5)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)

In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:

|u|L1 =

Z

⌦

udx.

L2(⌦) denotes the space of square integrable real valued functions defined on ⌦ with the norm |.|
corresponding to the scalar product defined

(u, v) =

Z

⌦

u.vdx

3

The semigroup

4. Existence and estimate of the fractal dimension of a global

attractor

4.1. Existence of a global attractor

Theorem 2. The semigroup {S(t)}t2R+ associated with (2.4)� (2.6) processes a global attractor
in H+ provided

�1Db + µ+ � � 2k > 0

where �1 > 0 is the first eigenvalue of the operator ��D on the domain ⌦ with homogeneous
Dirichlet boundary condition.

Proof. (a) Energy estimates and the existence of an absorbing set. Firstly, we prove the existence
of an absorbing set in M+. We multiply the first equation of (2.4) by b, integrate over ⌦, using the
Green formula and (2.5), we obtain

1

2

d

dt
|b|2 +Db|rb|2 =

Z

⌦

kfb2

Kb + f
dx+

Z

⌦

knb2

Kb + n
dx� (µ+ �)

Z

⌦

b2dx

 (2k � (µ+ �))|b|2

and hence, by the Poincare0 inequality,

d

dt
|b|2 + 2(�1Db + µ+ � � 2k)|b|2  0

where �1 > 0 is the first eigenvalue of the operator ��D on the domain ⌦ with homogeneous
Dirichlet boundary condition.

This inequality yields, using Gronwall’s lemma,

|b(t)|2  |b(0)|2e��t,� = �2(�1Db + µ+ � � 2k). (4.1)

Now, we multiply the second equation of (2.4) by f , integrate over ⌦, using the Green formula and
(2.5), we obtain

1

2

d

dt
|f |2 +Df |rf |2 = r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx�
Z

⌦

kbf 2

Kb + f
dx

 r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx

and hence, again by the Poincare0 inequality,

1

2

d

dt
|f |2 + �1Df |f |2  r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx
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Theorem 2. The semigroup {S(t)}t2R+ associated with (2.4)� (2.6) processes a global attractor
in V+ provided
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where �1 > 0 is the first eigenvalue of the operator ��D on the domain ⌦ with homogeneous
Dirichlet boundary condition.

Proof. (a) Energy estimates and the existence of an absorbing set. Firstly, we prove the existence
of an absorbing set in M+. We multiply the first equation of (2.4) by b, integrate over ⌦, using the
Green formula and (2.5), we obtain
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dt
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where �1 > 0 is the first eigenvalue of the operator ��D on the domain ⌦ with homogeneous
Dirichlet boundary condition.

This inequality yields, using Gronwall’s lemma,

|b(t)|2  |b(0)|2e��t,� = �2(�1Db + µ+ � � 2k). (4.1)

Now, we multiply the second equation of (2.4) by f , integrate over ⌦, using the Green formula and
(2.5), we obtain
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Theorem 3

processes local

where ⌫ is the outward normal vector of @⌦. Hence,

d

dt
|b+ f + n|L1  r

Z

⌦

fdx� r

K

Z

⌦

f 2dx.

Using Cauchy’s inequality, we have

�f 2  �Kf +

K2

4

.

Hence,

d

dt
|b+ f + n|L1  K2

4

,

which yields
|b+ f + n|L1  c(K, |b

0

|L1 , |f
0

|L1 , |n
0

|L1
).

In addition, by Ehrling’s lemma (see [24, Lemma 8.2]), we have the following estimate

|b|2L2  "|rb|2L2 + c(")|b|2L1 , 8b 2 H1

0

(⌦), 8✏ > 0. (4.1)

Now, coming back to the energy estimate in the proof of (3.2) in Theorem 2, we have

1

2

d

dt
|b|2L2 + (�

1

Db + µ+ �)|b|2L2  2k|b|2L2 .

Using (4.1) and the Poincaré inequality, we have

d

dt
|b|2L2 + (�

1

Db + µ+ �)|b|2L2  c(K,Kb, k, |b0|L1 , |f
0

|L1 , |n
0

|L1
),

which yields, using Gronwall’s lemma,

|b(t)|2L2  |b
0

|2L2e�(�1Db+µ+�)t
+ c, c = c(K,Kb, k, |b0|L1 , |f

0

|L1 , |n
0

|L1
).

Now, repeating arguments in the proof of Theorem 2, we obtain the desired estimates in L2

(⌦)

and therefore in V of b(t), f(t) and n(t) with the upper bounds only depending on the norms
|b

0

|L1 , |f
0

|L1 , |n
0

|L1 . This completes the proof.

5. Discussion and conclusion

We have presented and analyzed the asymptotic behavior of microbial degradation dynamics in
soil. From a mathematical point of view, we have showed that under the certain condition in
Theorem 2 there exists a finite-dimensional global attractor A in V+ of the semigroup {S(t)}t2R+

associated with problem (1.2)-(1.4). When that condition is invalid, we prove local ultimate bound-
edness of all solutions to the problem.

13
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We have presented and analyzed the asymptotic behavior of microbial degradation dynamics in
soil. From a mathematical point of view, we have showed that under the certain condition in
Theorem 2 there exists a finite-dimensional global attractor A in V+ of the semigroup {S(t)}t2R+

associated with problem (1.2)-(1.4). When that condition is invalid, we prove local ultimate bound-
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5. Discussion and conclusion

We have presented and analyzed the asymptotic behavior of microbial degradation dynamics in
soil. From a mathematical point of view, we have showed that under the certain condition in
Theorem 2 there exists a finite-dimensional global attractor A in V+ of the semigroup {S(t)}t2R+

associated with problem (1.2)-(1.4). When that condition is invalid, we prove local ultimate bound-
edness of all solutions to the problem.
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see in [Robinson J.C. 2001]
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Local ultimate boundedness of global solutions

of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)
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with the norm |.|L1:

|u|L1 =
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udx.
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In addition, by Ehrling’s lemma (see [24, Lemma 8.2]), we have the following estimate
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Now, coming back to the energy estimate in the proof of (3.2) in Theorem 2, we have
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and therefore in V of b(t), f(t) and n(t) with the upper bounds only depending on the norms
|b
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|L1 , |n
0

|L1 . This completes the proof.

5. Discussion and conclusion

We have presented and analyzed the asymptotic behavior of microbial degradation dynamics in
soil. From a mathematical point of view, we have showed that under the certain condition in
Theorem 2 there exists a finite-dimensional global attractor A in V+ of the semigroup {S(t)}t2R+

associated with problem (1.2)-(1.4). When that condition is invalid, we prove local ultimate bound-
edness of all solutions to the problem.

13

Idea of proof
+)

Now, we assume that the set B ⇢ X
1
2 is bounded. Let T > 0 and xn 2 B, tn � 0, n 2 N,
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4. Local ultimate boundedness of global solutions
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Local ultimate boundedness of global solutions

of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following
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with the Dirichlet boundary condition

b(t, x) = f(t, x) = n(t, x) = 0 on [0,+1)⇥ @⌦ (2.5)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)

In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:

|u|L1 =

Z

⌦

udx.

L2(⌦) denotes the space of square integrable real valued functions defined on ⌦ with the norm |.|
corresponding to the scalar product defined

(u, v) =

Z

⌦

u.vdx
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5. Discussion and conclusion

We have presented and analyzed the asymptotic behavior of microbial degradation dynamics in
soil. From a mathematical point of view, we have showed that under the certain condition in
Theorem 2 there exists a finite-dimensional global attractor A in V+ of the semigroup {S(t)}t2R+

associated with problem (1.2)-(1.4). When that condition is invalid, we prove local ultimate bound-
edness of all solutions to the problem.
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                                      : existence of a finite-dimensional global attractor 

 When the condition is invalid: local ultimate boundedness of global 
solutions

  Optimal control, other biological systems...

4. Existence and estimate of the fractal dimension of a global

attractor

4.1. Existence of a global attractor

Theorem 2. The semigroup {S(t)}t2R+ associated with (2.4)� (2.6) processes a global attractor
in V+ provided

�1Db + µ+ � � 2k > 0

where �1 > 0 is the first eigenvalue of the operator ��D on the domain ⌦ with homogeneous
Dirichlet boundary condition.

Proof. (a) Energy estimates and the existence of an absorbing set. Firstly, we prove the existence
of an absorbing set in M+. We multiply the first equation of (2.4) by b, integrate over ⌦, using the
Green formula and (2.5), we obtain

1

2

d

dt
|b|2 +Db|rb|2 =

Z

⌦

kfb2

Kb + f
dx+

Z

⌦

knb2

Kb + n
dx� (µ+ �)

Z

⌦

b2dx

 (2k � (µ+ �))|b|2

and hence, by the Poincare0 inequality,

d

dt
|b|2 + 2(�1Db + µ+ � � 2k)|b|2  0

where �1 > 0 is the first eigenvalue of the operator ��D on the domain ⌦ with homogeneous
Dirichlet boundary condition.

This inequality yields, using Gronwall’s lemma,

|b(t)|2  |b(0)|2e��t,� = �2(�1Db + µ+ � � 2k). (4.1)

Now, we multiply the second equation of (2.4) by f , integrate over ⌦, using the Green formula and
(2.5), we obtain

1

2

d

dt
|f |2 +Df |rf |2 = r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx�
Z

⌦

kbf 2

Kb + f
dx

 r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx

and hence, again by the Poincare0 inequality,

1

2

d

dt
|f |2 + �1Df |f |2  r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx

8
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of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following
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and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)

In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:

|u|L1 =

Z

⌦

udx.

L2(⌦) denotes the space of square integrable real valued functions defined on ⌦ with the norm |.|
corresponding to the scalar product defined
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Z
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3

Sketch of proof

Existence of a global attractor

Therefore,
|F (u)� F (u)|2  c(R, k,Kb, µ, �)||u� u||2, (2.2)

for all u, v 2 V+ such that kuk, kvk  R, i.e. F = (F
1

, F
2

, F
3

) : X1/2
= V+ �! X = H+ is

locally Lipschitz. This combining with the fact that A is a sectorial operator in X lead to the fact
that there is a unique non-negative local mild solution of (1.2) - (1.4) given by

u(t) = e�Atu
0

+

Z t

0

e�A(t�s)F (u(s))ds. (2.3)

Moreover, this solution depends continuously on the initial data.
Finally, thanks to the priori estimates of solutions u(t) = (b(t), f(t), n(t)) (see part a) in the

the proof in Theorem 2 below), the non-negative solutions of (1.2) - (1.4) are globally defined.

3. Existence of a finite-dimensional global attractor

By Theorem 1, we can define the continuous semigroup S(t) : V+ ! V+, t � 0, associated with
the problem (1.2) - (1.4) as follows

S(t)u
0

:= u(t) = (b(t), f(t), n(t)),

where u(·) is the unique mild solution to problem (1.2) - (1.4) with the initial datum u
0

.

Theorem 2. The semigroup {S(t)}t�0

associated with problem (1.2) - (1.4) possesses a finite-
dimensional global attractor in V+ provided

�
1

Db + µ+ � � 2k > 0, (3.1)

where �
1

> 0 is the first eigenvalue of the operator ��D on the domain ⌦ with the homogeneous
Dirichlet boundary condition.

Proof. (a) Existence of an absorbing set in V+. Firstly, we prove the existence of an absorbing set
in H+. We multiply the first equation of (1.2) by b, integrate over ⌦, then use the Green formula
and (1.3), to obtain

1

2

d

dt
|b|2L2 +Db|rb|2L2 =

Z

⌦

kfb2

Kb + f
dx+

Z

⌦

knb2

Kb + n
dx� (µ+ �)

Z

⌦

b2dx

 (2k � (µ+ �))|b|2L2 ,

and hence, by the Poincaré inequality,

d

dt
|b|2L2 + 2(�

1

Db + µ+ � � 2k)|b|2L2  0.
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This inequality yields, using Gronwall’s lemma,

|b(t)|2L2  |b(0)|2L2e��t,� = �2(�
1

Db + µ+ � � 2k). (3.2)

Now, multiplying the second equation of (1.2) by f , integrating over ⌦, using the Green formula
and (1.3), we obtain

1

2

d

dt
|f |2L2 +Df |rf |2L2 = r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx�
Z
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kbf 2

Kb + f
dx

 r

Z
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f 2dx� r

K
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f 3dx,

and hence, again by the Poincaré inequality,
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2

d

dt
|f |2L2 + �

1

Df |f |2L2  r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx.

Using Cauchy’s inequality, we have

f 3
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f 3
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◆
3

� Kf 2,

or

�f 3  �Kf 2

+ 4

✓
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3

◆
3

.

Hence,
1

2

d

dt
|f |2L2 + �

1

Df |f |2L2  4rK2

27

yields, using Gronwall’s lemma,

|f(t)|2L2 
�|f(0)|2L2 � c

1

�
e��1Df t

+ c
1

, c
1

=

4rK2

27�
1

Df

. (3.3)
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4Db

|b|2L2  (2k + µ+ �)2
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                                      : existence of a finite-dimensional global attractor 

 When the condition is invalid: local ultimate boundedness of global 
solutions

  Optimal control, other biological systems...

4. Existence and estimate of the fractal dimension of a global

attractor

4.1. Existence of a global attractor

Theorem 2. The semigroup {S(t)}t2R+ associated with (2.4)� (2.6) processes a global attractor
in V+ provided

�1Db + µ+ � � 2k > 0

where �1 > 0 is the first eigenvalue of the operator ��D on the domain ⌦ with homogeneous
Dirichlet boundary condition.

Proof. (a) Energy estimates and the existence of an absorbing set. Firstly, we prove the existence
of an absorbing set in M+. We multiply the first equation of (2.4) by b, integrate over ⌦, using the
Green formula and (2.5), we obtain

1

2

d

dt
|b|2 +Db|rb|2 =

Z

⌦

kfb2

Kb + f
dx+

Z

⌦

knb2

Kb + n
dx� (µ+ �)

Z

⌦

b2dx

 (2k � (µ+ �))|b|2

and hence, by the Poincare0 inequality,

d

dt
|b|2 + 2(�1Db + µ+ � � 2k)|b|2  0

where �1 > 0 is the first eigenvalue of the operator ��D on the domain ⌦ with homogeneous
Dirichlet boundary condition.

This inequality yields, using Gronwall’s lemma,

|b(t)|2  |b(0)|2e��t,� = �2(�1Db + µ+ � � 2k). (4.1)

Now, we multiply the second equation of (2.4) by f , integrate over ⌦, using the Green formula and
(2.5), we obtain

1

2

d

dt
|f |2 +Df |rf |2 = r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx�
Z

⌦

kbf 2

Kb + f
dx

 r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx

and hence, again by the Poincare0 inequality,

1

2

d

dt
|f |2 + �1Df |f |2  r

Z

⌦

f 2dx� r

K

Z

⌦

f 3dx

8
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Thanks

of F .
The model 2.1 is the system of parabolic partial differential equations. We consider the system

with the Dirichlet boundary condition

b(t, x) = f(t, x) = m1(t, x) = m2(t, x) = n(t, x) = c(t, x) = 0 on [0,+1)⇥ @⌦ (2.2)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), m1(0, x) = m10(x),

m2(0, x) = m20(x), n(0, x) = n0(x), c(0, x) = c0(x) for x 2 ⌦. (2.3)

Since m1, m2 and c do not appear in the other equations, it suffices to consider the system
involving three variables b, f and n in the following

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

@b

@t
= Db�b+

kfb

Kb + f
+

knb

Kb + n
� µb� �b

@f

@t
= Df�f + rf

✓
1� f

K

◆
� kfb

Kb + f

@n

@t
= Dn�n+ �µb� knb

Kb + n

(2.4)

with the Dirichlet boundary condition

b(t, x) = f(t, x) = n(t, x) = 0 on [0,+1)⇥ @⌦ (2.5)

and initial condition

b(0, x) = b0(x), f(0, x) = f0(x), n(0, x) = n0(x), for x 2 ⌦. (2.6)

In next sections, we shall investigate asymptotic behavior of system (2.4). The following func-
tion spaces will be used. L1(⌦) denotes the space of integrable real valued functions defined on ⌦
with the norm |.|L1:

|u|L1 =

Z

⌦

udx.

L2(⌦) denotes the space of square integrable real valued functions defined on ⌦ with the norm |.|
corresponding to the scalar product defined

(u, v) =

Z

⌦

u.vdx

3

Thank you very much for your attention!


