ASYMPTOTIC BEHAVIOR OF MICROBIAL DEGRADATION DYNAMICS IN SOIL

NGUYEN NGOC DOANH
JOINT WORK WITH CUNG THE ANH

School of Applied Mathematics and Informatics

OUTLINE

Introduction- Existence and Uniqueness of global mild solutions

Q Existence of a finite-dimensional global attractor

Q Local ultimate boundedness of global solutions

Q Conclusions and Perspectives

Biologjeal problem

[Coucheyney E. 2009]

The model

MB	$\left(\frac{\partial b}{\partial t}\right.$
F	$\frac{\partial f}{\partial t}$
SW	$\frac{\partial m_{1}}{\partial t}=$
UDSM	$\frac{\partial m_{2}}{\partial t}=$
DSM	$\frac{\partial n}{\partial t}$
CO_{2}	$\frac{\partial c}{\partial t}$

The model

MB	$\left(\frac{\partial b}{\partial t}\right.$	$=$
F	$\frac{\partial f}{\partial t}$	$=D_{f} \Delta f+r f\left(1-\frac{f}{K}\right)-\frac{k f b}{K_{b}+f}$
SW	$\frac{\partial m_{1}}{\partial t}$	$=$
UDSM	$\frac{\partial m_{2}}{\partial t}$	$=$
DSM	$\frac{\partial n}{\partial t}$	$=$
CO_{2}	$\frac{\partial c}{\partial t}$	$=$

The model

MB	$\left(\frac{\partial b}{\partial t}\right.$	$=D_{b} \Delta b+\frac{k f b}{K_{b}+f}$
F	$\frac{\partial f}{\partial t}$	$=D_{f} \Delta f+r f\left(1-\frac{f}{K}\right)-\frac{k f b}{K_{b}+f}$
SW	$\frac{\partial m_{1}}{\partial t}$	$=$
UDSM	$\frac{\partial m_{2}}{\partial t}$	$=$
DSM	$\frac{\partial n}{\partial t}$	$=$
CO_{2}	$\frac{\partial c}{\partial t}$	$=$

The model

MB	$\left(\frac{\partial b}{\partial t}\right.$	$=D_{b} \Delta b+\frac{k f b}{K_{b}+f} \quad-\gamma b$
F	$\frac{\partial f}{\partial t}$	$=D_{f} \Delta f+r f\left(1-\frac{f}{K}\right)-\frac{k f b}{K_{b}+f}$
SW	$\frac{\partial m_{1}}{\partial t}$	$=$
UDSM	$\frac{\partial m_{2}}{\partial t}$	$=$
DSM	$\frac{\partial n}{\partial t}$	$=$
CO_{2}	$\frac{\partial c}{\partial t}$	$=D_{c} \Delta c+\gamma b$

The model

MB \begin{tabular}{ll}

$\frac{\partial b}{\partial t}$	$=D_{b} \Delta b+\frac{k f b}{K_{b}+f}$
SW	$-\mu b-\gamma b$
$\frac{\partial f}{\partial t}$	$=D_{f} \Delta f+r f\left(1-\frac{f}{K}\right)-\frac{k f b}{K_{b}+f}$
$\frac{\partial m_{1}}{\partial t}$	$=$
UDSM	
$\frac{\partial m_{2}}{\partial t}$	$=$
DSM	
$\mathbf{C O}_{\mathbf{2}}$	$=$
$\frac{\partial n}{\partial t}$	$=D_{c} \Delta c+\gamma b$

$.$

$\frac{\partial c}{\partial t}$
\end{tabular}

The model

MB	$\left(\frac{\partial b}{\partial t}\right.$	$=D_{b} \Delta b+\frac{k f b}{K_{b}+f} \quad-\mu b-\gamma b$
F	$\frac{\partial f}{\partial t}$	$=D_{f} \Delta f+r f\left(1-\frac{f}{K}\right)-\frac{k f b}{K_{b}+f}$
SW	$\frac{\partial m_{1}}{\partial t}$	$=\alpha \mu b$
UDSM	$\frac{\partial m_{2}}{\partial t}$	$=D_{m_{2}} \Delta m_{2}+(1-\alpha-\beta) \mu b$
DSM	$\frac{\partial n}{\partial t}$	$=D_{n} \Delta n+\beta \mu b$
CO_{2}	$\frac{\partial c}{\partial t}$	$=D_{c} \Delta c+\gamma b$

The modeJ

MB	$\left(\frac{\partial b}{\partial t}\right.$	$=D_{b} \Delta b+\frac{k f b}{K_{b}+f}+\frac{k n b}{K_{b}+n}-\mu b-\gamma b$
F	$\frac{\partial f}{\partial t}$	$=D_{f} \Delta f+r f\left(1-\frac{f}{K}\right)-\frac{k f b}{K_{b}+f}$
SW	$\frac{\partial m_{1}}{\partial t}$	$=\alpha \mu b$
UDSM	$\frac{\partial m_{2}}{\partial t}$	$=D_{m_{2}} \Delta m_{2}+(1-\alpha-\beta) \mu b$
DSM	$\frac{\partial n}{\partial t}$	$=D_{n} \Delta n+\beta \mu b-\frac{k n b}{K_{b}+n}$
CO_{2}	$\frac{\partial c}{\partial t}$	$=D_{c} \Delta c+\gamma b$

The modeJ

MB	$\left(\frac{\partial b}{\partial t}\right.$	$=D_{b} \Delta b+\frac{k f b}{K_{b}+f}+\frac{k n b}{K_{b}+n}-\mu b-\gamma b$
F	$\frac{\partial f}{\partial t}$	$=D_{f} \Delta f+r f\left(1-\frac{f}{K}\right)-\frac{k f b}{K_{b}+f}$
SW	$\frac{\partial m_{1}}{\partial t}$	$=\alpha \mu b$
UDSM	$\frac{\partial m_{2}}{\partial t}$	$=D_{m_{2}} \Delta m_{2}+(1-\alpha-\beta) \mu b$
DSM	$\frac{\partial n}{\partial t}$	$=D_{n} \Delta n+\beta \mu b-\frac{k n b}{K_{b}+n}$
CO_{2}	$\frac{\partial c}{\partial t}$	$=D_{c} \Delta c+\gamma b$

The model

Dirichlet boundary condition

$$
\begin{equation*}
b(t, x)=f(t, x)=m_{1}(t, x)=m_{2}(t, x)=n(t, x)=c(t, x)=0 \text { on }[0,+\infty) \times \partial \Omega \tag{2}
\end{equation*}
$$

Initial condition

$$
\begin{gather*}
b(0, x)=b_{0}(x), f(0, x)=f_{0}(x), m_{1}(0, x)=m_{10}(x) \tag{3}\\
m_{2}(0, x)=m_{20}(x), n(0, x)=n_{0}(x), c(0, x)=c_{0}(x) \text { for } x \in \Omega
\end{gather*}
$$

The mode]

$$
\times \begin{cases}\frac{\partial b}{\partial t} & =D_{b} \Delta b+\frac{k f b}{K_{b}+f}+\frac{k n b}{K_{b}+n}-\mu b-\gamma b \tag{1}\\ \frac{\partial f}{\partial t} & =D_{f} \Delta f+r f\left(1-\frac{f}{K}\right)-\frac{k f b}{K_{b}+f} \\ \frac{\partial m_{1}}{\partial t} & =\alpha \mu b \\ \frac{\partial m_{2}}{\partial t} & =D_{m_{2}} \Delta m_{2}+(1-\alpha-\beta) \mu b \\ \frac{\partial n}{\partial t} & =D_{n} \Delta n+\beta \mu b-\frac{k n b}{K_{b}+n} \\ \frac{\partial c}{\partial t} & =D_{c} \Delta c+\gamma b\end{cases}
$$

The model

$$
\left\{\begin{array}{l}
\frac{\partial b}{\partial t}=D_{b} \Delta b+\frac{k f b}{K_{b}+f}+\frac{k n b}{K_{b}+n}-\mu b-\gamma b \\
\frac{\partial f}{\partial t}=D_{f} \Delta f+r f\left(1-\frac{f}{K}\right)-\frac{k f b}{K_{b}+f} \\
\frac{\partial n}{\partial t}=D_{n} \Delta n+\beta \mu b-\frac{k n b}{K_{b}+n}
\end{array}\right.
$$

Dirichlet boundary condition

$$
\begin{equation*}
b(t, x)=f(t, x)=n(t, x)=0 \text { on }[0,+\infty) \times \partial \Omega \tag{5}
\end{equation*}
$$

Initial condition

$$
\begin{equation*}
b(0, x)=b_{0}(x), f(0, x)=f_{0}(x), n(0, x)=n_{0}(x), \text { for } x \in \Omega \tag{6}
\end{equation*}
$$

OUTLINE

Introduction

Existence and Uniqueness of global mild solutions

Q Existence of a finite-dimensional global attractor

Q Local ultimate boundedness of global solutions

Q Conclusions and Perspectives

Existence and Uniqueness of global milld solutions

$$
\begin{gathered}
\mathcal{H}=L^{2}(\Omega)^{3}, \mathcal{H}^{+}=\text {positive functions in } \mathcal{H} \\
\mathcal{V}=\left(H_{0}^{1}(\Omega)\right)^{3}, \mathcal{V}^{+}=\text {positive functions in } \mathcal{V}
\end{gathered}
$$

Theorem 1

For any initial value $u_{0}=\left(b_{0}, f_{0}, n_{0}\right) \in \mathcal{V}^{+}$given, there exists a unique positive global mild solution $u(t)=(b(t), f(t), n(t))$ of the problem (4-6).

Existence and Uniqueness of g|lobal mild solutions

Sketch of proof

Positivity preserving: Using Theorem 2.1 in [Efendiev, M.A. and Eberl, H.J. 2007]

Local Lipschitz:

$$
\left\{\begin{aligned}
F_{1}(b, f, n) & =\frac{k f b}{K_{b}+f}+\frac{k n b}{K_{b}+n}-\mu b-\gamma b \\
F_{2}(b, f, n) & =r f\left(1-\frac{f}{K}\right)-\frac{k f b}{K_{b}+f} \\
F_{3}(b, f, n) & =\beta \mu b-\frac{k n b}{K_{b}+n}
\end{aligned}\right.
$$

Existence and Uniqueness of g|lobal milld solutions

Sketch of proof

Positivity preserving: Using Theorem 2.1 in [Efendiev, M.A. and Eberl, H.J. 2007]

Local Lipschitz:

$$
\begin{aligned}
\mid F_{1}(b, f, n)- & \left.F_{1}(\bar{b}, \bar{f}, \bar{n})\right|_{L^{2}} ^{2}=\left|\frac{k f b}{K_{b}+f}-\frac{k \overline{f b}}{K_{b}+\bar{f}}+\frac{k n b}{K_{b}+n}-\frac{k \bar{n} \bar{b}}{K_{b}+\bar{n}}-\mu(b-\bar{b})-\gamma(b-\bar{b})\right|_{L^{2}}^{2} \\
& \leq c(k, \mu, \gamma)\left(\left|\frac{k f b}{K_{b}+f}-\frac{k \overline{f b}}{K_{b}+\bar{f}}\right|_{L^{2}}^{2}+\left|\frac{k n b}{K_{b}+n}-\frac{k \bar{n} \bar{b}}{K_{b}+\bar{n}}\right|_{L^{2}}^{2}+(\mu+\gamma)|b-\bar{b}|_{L^{2}}^{2}\right)
\end{aligned}
$$

Existence and Uniqueness of g|lobal milld solutions

Because

$$
\begin{aligned}
\left|\frac{k f b}{K_{b}+f}-\frac{k \overline{f b}}{K_{b}+\bar{f}}\right|_{L^{2}}^{2}= & \left|\frac{k f b}{K_{b}+f}-\frac{k f \bar{b}}{K_{b}+f}+\frac{k f \bar{b}}{K_{b}+f}-\frac{k \overline{f b}}{K_{b}+\bar{f}}\right|_{L^{2}}^{2} \\
& \leq c(k, \mu, \gamma)\left(\left|\frac{k f}{K_{b}+f}(b-\bar{b})\right|_{L^{2}}^{2}+\left|\frac{k \bar{b} K_{b}(f-\bar{f})}{\left(K_{b}+f\right)\left(K_{b}+\bar{f}\right)}\right|_{L^{2}}^{2}\right) \\
& \leq c\left(K_{b}, k, \mu, \gamma\right)\left(|b-\bar{b}|_{L^{2}}^{2}+|\bar{b}(f-\bar{f})|_{L^{2}}^{2}\right)
\end{aligned}
$$

yields, using Hölder's inequality,

$$
\begin{aligned}
\left|\frac{k f b}{K_{b}+f}-\frac{k \overline{f b}}{K_{b}+\bar{f}}\right|_{L^{2}}^{2} & \leq c\left(K_{b}, k, \mu, \gamma\right)\left(|b-\bar{b}|_{L^{2}}^{2}+|\bar{b}|_{L^{4}}^{2}|f-\bar{f}|_{L^{4}}^{2}\right) \\
& \leq c\left(R, K_{b}, k, \mu, \gamma\right)\left(\|b-\bar{b}\|_{H_{0}^{1}}^{2}+\|f-\bar{f}\|_{H_{0}^{1}}^{2}\right) .
\end{aligned}
$$

Similarly, we also obtain the following inequality

$$
\left|\frac{k n b}{K_{b}+n}-\frac{k \bar{n} \bar{b}}{K_{b}+\bar{n}}\right|_{L^{2}}^{2} \leq c\left(R, K_{b}, k, \mu, \gamma\right)\left(\|b-\bar{b}\|_{H_{0}^{1}}^{2}+\|n-\bar{n}\|_{H_{0}^{1}}^{2}\right) .
$$

Existence and Uniqueness of g|lobal mild solutions

So, we have

$$
\left|F_{1}(b, f, n)-F_{1}(\bar{b}, \bar{f}, \bar{n})\right|_{L^{2}}^{2} \leq c\left(R, K_{b}, k, \mu, \gamma\right)\left(\|b-\bar{b}\|_{H_{0}^{1}}^{2}+\|f-\bar{f}\|_{H_{0}^{1}}^{2}+\|n-\bar{n}\|_{H_{0}^{1}}^{2}\right)
$$

Analogously,

$$
\begin{aligned}
& \left|F_{2}(b, f, n)-F_{2}(\bar{b}, \bar{f}, \bar{n})\right|_{L^{2}}^{2} \leq c\left(R, k, K_{b}, r, K\right)\left(\|f-\bar{f}\|_{H_{0}^{1}}^{2}+\|b-\bar{b}\|_{H_{0}^{1}}^{2}\right), \\
& \left|F_{3}(b, f, n)-F_{3}(\bar{b}, \bar{f}, \bar{n})\right|_{L^{2}}^{2} \leq c\left(R, k, K_{b}, \mu, \beta\right)\left(\|n-\bar{n}\|_{H_{0}^{1}}^{2}+\|b-\bar{b}\|_{H_{0}^{1}}^{2}\right) .
\end{aligned}
$$

Therefore,

$$
F=\left(F_{1}, F_{2}, F_{3}\right): X^{1 / 2}=\mathcal{V}^{+} \longrightarrow X=\mathcal{H}^{+} \text {is locally Lipschitz. }
$$

Existence and Uniqueness of g|lobal mild solutions

Sketch of proof

Positivity preserving: Using Theorem 2.1 in [Efendiev, M.A. and Eberl, H.J. 2007]

Local Lipschitz:

local non-negative mild solution + priori estimate of solutions (see later on)
$=>$ global non-negative mild solution

Reminder

Mild solution:

$$
u(t)=e^{-A t} u_{0}+\int_{0}^{t} e^{-A(t-s)} F(u(s)) d s
$$

$$
u:=(b, f, n)^{t}, F(u):=\left(F_{1}(u), F_{2}(u), F_{3}(u)\right)^{t} .
$$

$$
A:=-\left(\begin{array}{ccc}
D_{b} & 0 & 0 \\
0 & D_{f} & 0 \\
0 & 0 & D_{n}
\end{array}\right) \Delta_{D}
$$

Reminder

The operator

$$
A:=-\left(\begin{array}{ccc}
D_{b} & 0 & 0 \\
0 & D_{f} & 0 \\
0 & 0 & D_{n}
\end{array}\right) \Delta_{D}
$$

is positive and self-adjoint in \mathcal{H} and has compact inverse. Consider an orthonormal basis in $H_{0}^{1}(\Omega)$ consisting of eigenfunctions $e_{j} \in H_{0}^{1}(\Omega), j=1,2, \ldots$, of the operator $-\Delta_{D}$ corresponding to the eigenvalues

$$
0<\lambda_{1} \leq \lambda_{2} \leq \ldots, \lambda_{j} \longrightarrow \infty \text { as } j \longrightarrow \infty .
$$

For $u=(b, f, n)^{t} \in \mathcal{V}$, we have

$$
\begin{aligned}
& u=\left(\sum_{j=1}^{\infty}\left\langle b, e_{j}\right\rangle e_{j}, \sum_{j=1}^{\infty}\left\langle f, e_{j}\right\rangle e_{j}, \sum_{j=1}^{\infty}\left\langle n, e_{j}\right\rangle e_{j}\right)^{t}, \\
& A u=\left(\sum_{j=1}^{\infty} D_{b} \lambda_{j}\left\langle b, e_{j}\right\rangle e_{j}, \sum_{j=1}^{\infty} D_{f} \lambda_{j}\left\langle f, e_{j}\right\rangle e_{j}, \sum_{j=1}^{\infty} D_{n} \lambda_{j}\left\langle n, e_{j}\right\rangle e_{j}\right)^{t} .
\end{aligned}
$$

Reminder

Hence $e^{-t A}: \mathcal{V} \rightarrow \mathcal{V}$ defined by

$$
e^{-t A} u:=\left(\sum_{j=1}^{\infty} e^{-D_{b} \lambda_{j} t}\left\langle b, e_{j}\right\rangle e_{j}, \sum_{j=1}^{\infty} e^{-D_{f} \lambda_{j} t}\left\langle f, e_{j}\right\rangle e_{j}, \sum_{j=1}^{\infty} e^{-D_{n} \lambda_{j} t}\left\langle n, e_{j}\right\rangle e_{j}\right)^{t}
$$

is an analytic semigroup in \mathcal{V} generated by the operator A.
We denote the fractional power spaces associated to A by

$$
X^{\alpha}=\left(\mathcal{D}\left(A^{\alpha}\right),(., .)_{X^{\alpha}}\right), \alpha \in \mathbb{R}
$$

The inner product in X^{α} is given by

$$
(u, v)_{X^{\alpha}}=\left(A^{\alpha} u, A^{\alpha} v\right)_{X^{0}}, u, v \in \mathcal{D}\left(A^{\alpha}\right)
$$

where

$$
\mathcal{D}\left(A^{\alpha}\right)=\left\{u=\left(\begin{array}{c}
\sum_{j=1}^{\infty}\left\langle b, e_{j}\right\rangle e_{j} \\
\sum_{j=1}^{\infty}\left\langle f, e_{j}\right\rangle e_{j} \\
\sum_{j=1}^{\infty}\left\langle n, e_{j}\right\rangle e_{j}
\end{array}\right):\left\{\begin{array}{l}
\sum_{j=1}^{\infty}\left|D_{b} \lambda_{j}\right|^{2 \alpha}\left|\left\langle b, e_{j}\right\rangle\right|^{2}<\infty \\
\sum_{j=1}^{\infty}\left|D_{f} \lambda_{j}\right|^{2 \alpha}\left|\left\langle f, e_{j}\right\rangle\right|^{2}<\infty \\
\sum_{j=1}^{\infty}\left|D_{n} \lambda_{j}\right|^{2 \alpha}\left|\left\langle n, e_{j}\right\rangle\right|^{2}<\infty
\end{array}\right\}\right.
$$

Reminder

and

$$
A^{\alpha} u=\left(\sum_{j=1}^{\infty} D_{b}^{\alpha} \lambda_{j}^{\alpha}\left\langle b, e_{j}\right\rangle e_{j}, \sum_{j=1}^{\infty} D_{f}^{\alpha} \lambda_{j}^{\alpha}\left\langle f, e_{j}\right\rangle e_{j}, \sum_{j=1}^{\infty} D_{n}^{\alpha} \lambda_{j}^{\alpha}\left\langle n, e_{j}\right\rangle e_{j}\right)^{t}
$$

In these notations,

$$
X^{1}=\left(\mathcal{D}\left(-\Delta_{D}\right)\right)^{3}, X^{\frac{1}{2}}=\mathcal{V}, X^{0}=\mathcal{H}, X^{-\frac{1}{2}}=\mathcal{V}^{\prime}
$$

The operator A in X^{0} can be extended or restricted, respectively, to a positive sectorial operator in X^{α} with domain $X^{\alpha+1}, \alpha \in \mathbb{R}$, and the corresponding semigroups $e^{-A t}, t \geq 0$, in X^{α} are obtained from each other by natural restrictions and extensions. Moreover, if $\beta \leq \alpha$ we have $e^{-A t}\left(X^{\beta}\right) \subset X^{\alpha}$ and

$$
\left\|e^{-A t}\right\|_{\mathcal{L}\left(X^{\beta} ; X^{\alpha}\right)} \leq \frac{c_{\alpha, \beta}}{t^{\alpha-\beta}}, t>0
$$

for some constant $c_{\alpha, \beta} \geq 0$, where $\|.\|_{\mathcal{L}(V ; W)}$ denotes the norm of a linear operator between the normed spaces V and W (see, e.g., Section 2.1.1 in [Temam, R. 1997])

OUTLINE

IntroductionExistence and Uniqueness of global mild solutionsExistence of a finite-dimensional global attractorQ Local ultimate boundedness of global solutions

Q Conclusions and Perspectives

Existence of a g.|obal atituctior

Theorem 2

The semigroup $\{S(t)\}_{t \in \mathbb{R}_{+}}$associated with (4-6) processes a global attractor \mathcal{A} in \mathcal{V}^{+}provided

$$
\lambda_{1} D_{b}+\mu+\gamma-2 k>0
$$

where $\lambda_{1}>0$ is the first eigenvalue of the operator $-\Delta_{D}$ on the domain Ω with the homogeneous Dirichlet boundary condition.

Existence of a g|obal atitiractor

Sketch of proof

(a) Existence of an absorbing set in \mathcal{V}^{+}.
+) absorbing set in \mathcal{H}^{+}
-) $|b(t)|_{L^{2}}^{2} \leq|b(0)|_{L^{2}}^{2} e^{-\lambda t}, \lambda=-2\left(\lambda_{1} D_{b}+\mu+\gamma-2 k\right)$.
-) $|f(t)|_{L^{2}}^{2} \leq\left(|f(0)|_{L^{2}}^{2}-c_{1}\right) e^{-\lambda_{1} D_{f} t}+c_{1}, c_{1}=\frac{4 r K^{2}}{27 \lambda_{1} D_{f}}$.
-) $\quad|n(t)|_{L^{2}}^{2} \leq\left(|n(0)|_{L^{2}}^{2}-\frac{c_{2}}{\lambda_{1} D_{n}-\lambda}|b(0)|_{L^{2}}^{2}\right) e^{-\lambda_{1} D_{n} t}+\frac{c_{2}}{\lambda_{1} D_{n}-\lambda}|b(0)|_{L^{2}}^{2} e^{-\lambda t}$.
\Rightarrow the ball $B_{\mathcal{H}^{+}}(0, R)$ is a bounded absorbing set in \mathcal{H}^{+}.

Existence of a g|obal atitiractor

Sketch of proof

(a) Existence of an absorbing set in \mathcal{V}^{+}.

+) absorbing set in \mathcal{V}^{+}
-) $\|b(t)\|_{H_{0}^{1}}^{2} \leq c_{3}, c_{3}=\frac{2(2 k-\mu-\gamma)}{2 D_{b}} R^{2}+\frac{R^{2}}{2 D_{b}}+\frac{(2 k+\mu+\gamma)^{2}}{4 D_{b}} R^{2}, \forall t \geq T+1$.
-) $\|f(t)\|_{H_{0}^{1}}^{2} \leq c_{6}, c_{6}=\left(c_{4}+c_{5}\right) e^{2 r}, \forall t \geq T+2$.
-) $\|n(t)\|_{H_{0}^{1}}^{2} \leq c_{9}, c_{9}=c_{8}+c_{7}, \forall t \geq T+1$.

We choose $R_{\max }=\max \left\{2 c_{3}, 2 c_{6}, 2 c_{9}\right\}$, it implies that $B_{\mathcal{V}^{+}}\left(0, R_{\max }\right)$ is a bounded absorbing set in \mathcal{V}^{+}for the semigroup $S(t)$.

Existence of a g|obal atitiractor

Sketch of proof

(a) Existence of an absorbing set in \mathcal{V}^{+}.
(b) Asymptotic compactness of the semigroup.

Lemma 1 Let $B \subset X^{\frac{1}{2}}$ be a bounded set. Then, for every $T^{*}>0$ there exists a constant κ such that

$$
\left\|S\left(T^{*}\right) u-S\left(T^{*}\right) v\right\|_{X^{\frac{1}{2}}} \leq \kappa\|u-v\|_{X^{0}}, \forall u, v \in B
$$

Existence of a g|lobal atitractor

Sketch of proof

Now, we assume that the set $B \subset X^{\frac{1}{2}}$ is bounded.
Let $T>0$ and $x_{n} \in B, t_{n} \geq 0, n \in \mathbb{N}$, be sequences such that $t_{n} \longrightarrow \infty$.
$\Rightarrow\left\{S\left(t_{n}{ }^{-}-T\right) x_{n}: t_{n} \geq T, n \in \mathbb{N}\right\}$ is bounded in $X^{\frac{1}{2}}$.
$\Rightarrow v_{k}:=S\left(t_{n_{k}}-T\right) x_{n_{k}}$ converging weakly to v in $X^{\frac{1}{2}}$ and strongly to v in X^{0}

Lemma $1 \Rightarrow\left\|S(T) v_{k}-S(T) v\right\|_{X^{\frac{1}{2}}} \leq \kappa\left\|v_{k}-v\right\|_{X^{0}}$,
$=>$ asymptotic compactness of the semigroup.

Existence of a g|Jobal atitractor

Fractal dimension estimates of the global attractor

The global attractor \mathcal{A} has finite fractal dimension

[Efendiev et al. 2005]

Lemma 2 Let V and W be Banach spaces such that the embedding $V \hookrightarrow W$ is dense and compact, and let $S(t), t \geq 0$, be a semigroup in V. We assume $\mathcal{A} \subset V$ is a compact invariant set and the semigroup satisfies the smoothing property: There exist $T^{*}>0$ and a constant $\kappa \geq 0$ such that

$$
\left\|S\left(T^{*}\right) u-S\left(T^{*}\right) v\right\|_{V} \leq \kappa\|u-v\|_{W}, \forall u, v \in \mathcal{A}
$$

Then, the fractal dimension of \mathcal{A} in V is finite.
We now can apply Lemma 2 to the semigroup $S(t), t \geq 0$, with $V=X^{\frac{1}{2}}$ and $W=X^{0}$ to get the finiteness of the fractal dimension of the global attractor.

OUTLINE

Introduction© Existence and Uniqueness of global mild solutions

Q Existence of a finite-dimensional global attractorLocal ultimate boundedness of global solutions

Q Conclusions and Perspectives

Local ulfimate boundedness of global solutions

Theorem 3

The semigroup $\{S(t)\}_{t \in \mathbb{R}_{+}}$associated with (4-6) processes local absorbing sets in \mathcal{V}^{+}.

Idea of proof

$+)|b+f+n|_{L^{1}} \leq c\left(K,\left|b_{0}\right|_{L^{1}},\left|f_{0}\right|_{L^{1}},\left|n_{0}\right|_{L^{1}}\right)$.
+) $|b|_{L^{2}}^{2} \leq \varepsilon|\nabla b|_{L^{2}}^{2}+c(\varepsilon)|b|_{L^{1}}^{2}, \forall b \in H_{0}^{1}(\Omega), \forall \epsilon>0$. see in [Robinson J.C. 2001]
$+)|b(t)|_{L^{2}}^{2} \leq\left|b_{0}\right|_{L^{2}}^{2} e^{-\left(\lambda_{1} D_{b}+\mu+\gamma\right) t}+c, c=c\left(K, K_{b}, k,\left|b_{0}\right|_{L^{1}},\left|f_{0}\right|_{L^{1}},\left|n_{0}\right|_{L^{1}}\right)$.

Local ulfimate boundedness of global solutions

Idea of proof

$+)|b+f+n|_{L^{1}} \leq c\left(K,\left|b_{0}\right|_{L^{1}},\left|f_{0}\right|_{L^{1}},\left|n_{0}\right|_{L^{1}}\right)$.

$$
\begin{aligned}
\frac{d}{d t}|b+f+n|_{L^{1}}-\int_{\Omega}\left(D_{b} \Delta b+D_{f} \Delta f+D_{n} \Delta n\right) d x & =(\beta \mu-\mu-\gamma)|b|_{L^{1}}+r \int_{\Omega} f d x-\frac{r}{K} \int_{\Omega} f^{2} d x \\
& \leq r \int_{\Omega} f d x-\frac{r}{K} \int_{\Omega} f^{2} d x
\end{aligned}
$$

In addition, using Stokes' formula, we have

$$
\int_{\Omega}\left(D_{b} \Delta b+D_{f} \Delta f+D_{n} \Delta n\right) d x=\int_{\partial \Omega}\left(\frac{\partial b}{\partial \nu}+\frac{\partial f}{\partial \nu}+\frac{\partial n}{\partial \nu}\right) d s \leq 0
$$

Hence,

$$
\frac{d}{d t}|b+f+n|_{L^{1}} \leq r \int_{\Omega} f d x-\frac{r}{K} \int_{\Omega} f^{2} d x
$$

Local ultimate boundedness of g||obal solutions

Idea of proof

Using Cauchy's inequality, we have

$$
-f^{2} \leq-K f+\frac{K^{2}}{4}
$$

Hence,

$$
\frac{d}{d t}|b+f+n|_{L^{1}} \leq \frac{K^{2}}{4}
$$

which yields

$$
|b+f+n|_{L^{1}} \leq c\left(K,\left|b_{0}\right|_{L^{1}},\left|f_{0}\right|_{L^{1}},\left|n_{0}\right|_{L^{1}}\right) .
$$

OUTLINE

IntroductionQ Existence and Uniqueness of global mild solutions

Q Existence of a finite-dimensional global attractor

Q Local ultimate boundedness of global solutions

Conclusions and Perspectives

Conclusions and perspectives

- $\lambda_{1} D_{b}+\mu+\gamma-2 k>0$: existence of a finite-dimensional global attractor

Q When the condition is invalid: local ultimate boundedness of global solutions

Optimal control, other biological systems...

Existence of a g|Jobal atitractor

Sketch of proof

(a) Existence of an absorbing set in \mathcal{V}^{+}.
+) absorbing set in \mathcal{H}^{+}
-) $|b(t)|_{L^{2}}^{2} \leq|b(0)|_{L^{2}}^{2} e^{-\lambda t}, \lambda=-2\left(\lambda_{1} D_{b}+\mu+\gamma-2 k\right)$.
-) $|f(t)|_{L^{2}}^{2} \leq\left(|f(0)|_{L^{2}}^{2}-c_{1}\right) e^{-\lambda_{1} D_{f} t}+c_{1}, c_{1}=\frac{4 r K^{2}}{27 \lambda_{1} D_{f}}$.
-) $\quad|n(t)|_{L^{2}}^{2} \leq\left(|n(0)|_{L^{2}}^{2}-\frac{c_{2}}{\lambda_{1} D_{n}-\lambda}|b(0)|_{L^{2}}^{2}\right) e^{-\lambda_{1} D_{n} t}+\frac{c_{2}}{\lambda_{1} D_{n}-\lambda}|b(0)|_{L^{2}}^{2} e^{-\lambda t}$.
\Rightarrow the ball $B_{\mathcal{H}^{+}}(0, R)$ is a bounded absorbing set in \mathcal{H}^{+}.

Conclusions and perspectives

- $\lambda_{1} D_{b}+\mu+\gamma-2 k>0$: existence of a finite-dimensional global attractor

Q When the condition is invalid: local ultimate boundedness of global solutions

Optimal control, other biological systems...

Thanks

Thank you very much for your attention!

