

9/9/2014

ASYMPTOTIC BEHAVIOR OF MICROBIAL DEGRADATION DYNAMICS IN SOIL

NGUYEN NGOC DOANH JOINT WORK WITH CUNG THE ANH

School of Applied Mathematics and Informatics

Existence of a finite-dimensional global attractor

Solutions Second Example: Seco

Conclusions and Perspectives

Biological problem

[Coucheyney E. 2009]

MB
$$\left\{ \begin{array}{l} \frac{\partial b}{\partial t} & = \\ \\ \frac{\partial f}{\partial t} & = \\ \\ \frac{\partial m_1}{\partial t} & = \\ \\ \frac{\partial m_2}{\partial t} & = \\ \\ \frac{\partial m_2}{\partial t} & = \\ \\ \frac{\partial n}{\partial t} & = \\ \\ \frac{\partial c}{\partial t} & = \\ \\ \frac{\partial c}{\partial t} & = \\ \end{array} \right.$$

5 /41

$$\begin{split} \mathbf{MB} & \begin{cases} \frac{\partial b}{\partial t} &= \\ \mathbf{F} & \\ \frac{\partial f}{\partial t} &= D_f \Delta f + rf \left(1 - \frac{f}{K}\right) - \frac{kfb}{K_b + f} \\ \mathbf{SW} & \\ \frac{\partial m_1}{\partial t} &= \\ \mathbf{UDSM} & \\ \frac{\partial m_2}{\partial t} &= \\ \mathbf{DSM} & \\ \frac{\partial n}{\partial t} &= \\ \mathbf{CO}_{\mathbf{2}} & \\ \frac{\partial c}{\partial t} &= \\ \end{split}$$

$$\begin{split} \mathbf{MB} & \begin{cases} \frac{\partial b}{\partial t} &= D_b \Delta b + \frac{kfb}{K_b + f} \\ \mathbf{F} & \begin{cases} \frac{\partial f}{\partial t} &= D_f \Delta f + rf\left(1 - \frac{f}{K}\right) - \frac{kfb}{K_b + f} \\ \frac{\partial m_1}{\partial t} &= \\ \mathbf{UDSM} & \begin{cases} \frac{\partial m_2}{\partial t} &= \\ \frac{\partial n}{\partial t} &= \\ \frac{\partial n}{\partial t} &= \\ \mathbf{CO}_2 & \begin{cases} \frac{\partial c}{\partial t} &= \\ \frac{\partial c}{\partial t} &= \end{cases} \end{split}$$

$$\begin{split} \mathbf{MB} & \begin{cases} \frac{\partial b}{\partial t} &= D_b \Delta b + \frac{kfb}{K_b + f} & -\gamma b \\ \\ \frac{\partial f}{\partial t} &= D_f \Delta f + rf \left(1 - \frac{f}{K}\right) - \frac{kfb}{K_b + f} \\ \\ \mathbf{SW} & \begin{cases} \frac{\partial m_1}{\partial t} &= \\ \\ \frac{\partial m_2}{\partial t} &= \\ \\ \\ \mathbf{DSM} & \begin{cases} \frac{\partial n}{\partial t} &= \\ \\ \frac{\partial c}{\partial t} &= D_c \Delta c + \gamma b \end{cases} \end{split}$$

$$\begin{split} \mathbf{MB} & \begin{cases} \frac{\partial b}{\partial t} &= D_b \Delta b + \frac{kfb}{K_b + f} & -\mu b - \gamma b \\ \frac{\partial f}{\partial t} &= D_f \Delta f + rf \left(1 - \frac{f}{K}\right) - \frac{kfb}{K_b + f} \\ \mathbf{SW} & \begin{cases} \frac{\partial m_1}{\partial t} &= \\ \frac{\partial m_2}{\partial t} &= \\ \mathbf{DSM} & \begin{cases} \frac{\partial m}{\partial t} &= \\ \frac{\partial n}{\partial t} &= \\ \frac{\partial c}{\partial t} &= D_c \Delta c + \gamma b \end{cases} \end{split}$$

$$\begin{split} \mathbf{MB} & \begin{cases} \frac{\partial b}{\partial t} &= D_b \Delta b + \frac{kfb}{K_b + f} & -\mu b - \gamma b \\ \frac{\partial f}{\partial t} &= D_f \Delta f + rf\left(1 - \frac{f}{K}\right) - \frac{kfb}{K_b + f} \\ \mathbf{SW} & \begin{cases} \frac{\partial m_1}{\partial t} &= \alpha \mu b \\ \frac{\partial m_2}{\partial t} &= D_{m_2} \Delta m_2 + (1 - \alpha - \beta) \mu b \\ \mathbf{DSM} & \begin{cases} \frac{\partial n}{\partial t} &= D_n \Delta n + \beta \mu b \\ \frac{\partial c}{\partial t} &= D_c \Delta c + \gamma b \end{cases} \end{split}$$

$$\begin{split} \mathbf{MB} & \left\{ \begin{aligned} \frac{\partial b}{\partial t} &= D_b \Delta b + \frac{kfb}{K_b + f} + \frac{knb}{K_b + n} - \mu b - \gamma b \\ \mathbf{F} & \left\{ \begin{aligned} \frac{\partial f}{\partial t} &= D_f \Delta f + rf\left(1 - \frac{f}{K}\right) - \frac{kfb}{K_b + f} \\ \mathbf{SW} & \left\{ \begin{aligned} \frac{\partial m_1}{\partial t} &= \alpha \mu b \\ \\ \mathbf{UDSM} & \left\{ \begin{aligned} \frac{\partial m_2}{\partial t} &= D_{m_2} \Delta m_2 + (1 - \alpha - \beta) \mu b \\ \\ \\ \mathbf{DSM} & \left\{ \begin{aligned} \frac{\partial n}{\partial t} &= D_n \Delta n + \beta \mu b - \frac{knb}{K_b + n} \\ \\ \\ \\ \mathbf{CO}_2 & \left\{ \begin{aligned} \frac{\partial c}{\partial t} &= D_c \Delta c + \gamma b \end{aligned} \right. \end{split}$$

$$\begin{split} \mathbf{MB} & \begin{cases} \frac{\partial b}{\partial t} &= D_b \Delta b + \frac{kfb}{K_b + f} + \frac{knb}{K_b + n} - \mu b - \gamma b \\ \\ \frac{\partial f}{\partial t} &= D_f \Delta f + rf \left(1 - \frac{f}{K}\right) - \frac{kfb}{K_b + f} \\ \\ \mathbf{SW} & \begin{cases} \frac{\partial m_1}{\partial t} &= \alpha \mu b \\ \frac{\partial m_2}{\partial t} &= D_{m_2} \Delta m_2 + (1 - \alpha - \beta) \mu b \\ \\ \\ \mathbf{DSM} & \begin{cases} \frac{\partial n}{\partial t} &= D_n \Delta n + \beta \mu b - \frac{knb}{K_b + n} \\ \\ \frac{\partial c}{\partial t} &= D_c \Delta c + \gamma b \\ \end{cases} \end{split} \end{split}$$
(1)

The model

Dirichlet boundary condition

$$b(t,x) = f(t,x) = m_1(t,x) = m_2(t,x) = n(t,x) = c(t,x) = 0 \text{ on } [0,+\infty) \times \partial\Omega$$
(2)

Initial condition

$$b(0,x) = b_0(x), \ f(0,x) = f_0(x), \ m_1(0,x) = m_{10}(x),$$

$$m_2(0,x) = m_{20}(x), \ n(0,x) = n_0(x), \ c(0,x) = c_0(x) \text{ for } x \in \Omega.$$
(3)

SAMI

School of Applied Mathema

)

$$\begin{cases}
\frac{\partial b}{\partial t} = D_b \Delta b + \frac{kfb}{K_b + f} + \frac{knb}{K_b + n} - \mu b - \gamma b \\
\frac{\partial f}{\partial t} = D_f \Delta f + rf \left(1 - \frac{f}{K}\right) - \frac{kfb}{K_b + f} \\
\frac{\partial m_1}{\partial t} = \alpha \mu b \\
\frac{\partial m_2}{\partial t} = D_{m_2} \Delta m_2 + (1 - \alpha - \beta) \mu b \\
\frac{\partial n}{\partial t} = D_n \Delta n + \beta \mu b - \frac{knb}{K_b + n} \\
\frac{\partial c}{\partial t} = D_c \Delta c + \gamma b
\end{cases}$$
(1

08-11/Sept/2014 Asymptotic Behavior of Microbial Degradation Dynamics

The model

$$\frac{\partial f}{\partial t} = D_f \Delta f + r f \left(1 - \frac{f}{K} \right) - \frac{k f b}{K_b + f}$$
(4)

$$\frac{\partial n}{\partial t} = D_n \Delta n + \beta \mu b - \frac{knb}{K_b + n}$$

Dirichlet boundary condition

$$b(t,x) = f(t,x) = n(t,x) = 0 \text{ on } [0,+\infty) \times \partial \Omega$$
 (5)

Initial condition

$$b(0,x) = b_0(x), \ f(0,x) = f_0(x), \ n(0,x) = n_0(x), \ \text{for } x \in \Omega.$$
 (6)

Existence of a finite-dimensional global attractor

Solutions Second Example: Seco

Conclusions and Perspectives

 $\mathcal{H} = L^2(\Omega)^3, \ \mathcal{H}^+ = \text{positive functions in } \mathcal{H}$

 $\mathcal{V} = (H_0^1(\Omega))^3, \ \mathcal{V}^+ = \text{positive functions in } \mathcal{V}$

Theorem 1

For any initial value $u_0 = (b_0, f_0, n_0) \in \mathcal{V}^+$ given, there exists a unique positive global mild solution u(t) = (b(t), f(t), n(t)) of the problem (4-6).

Sketch of proof

See Positivity preserving: Using Theorem 2.1 in [Efendiev, M.A. and Eberl, H.J. 2007]

Uocal Lipschitz:

$$\begin{cases} F_1(b, f, n) &= \frac{kfb}{K_b + f} + \frac{knb}{K_b + n} - \mu b - \gamma b, \\ F_2(b, f, n) &= rf\left(1 - \frac{f}{K}\right) - \frac{kfb}{K_b + f}, \\ F_3(b, f, n) &= \beta \mu b - \frac{knb}{K_b + n}. \end{cases}$$

Sketch of proof

See Positivity preserving: Using Theorem 2.1 in [Efendiev, M.A. and Eberl, H.J. 2007]

Uocal Lipschitz:

$$|F_{1}(b,f,n) - F_{1}(\overline{b},\overline{f},\overline{n})|_{L^{2}}^{2} = \left|\frac{kfb}{K_{b}+f} - \frac{k\overline{f}\overline{b}}{K_{b}+\overline{f}} + \frac{knb}{K_{b}+n} - \frac{k\overline{n}\overline{b}}{K_{b}+\overline{n}} - \mu(b-\overline{b}) - \gamma(b-\overline{b})\right|_{L^{2}}^{2}$$
$$\leq c(k,\mu,\gamma) \left(\left|\frac{kfb}{K_{b}+f} - \frac{k\overline{f}\overline{b}}{K_{b}+\overline{f}}\right|_{L^{2}}^{2} + \left|\frac{knb}{K_{b}+n} - \frac{k\overline{n}\overline{b}}{K_{b}+\overline{n}}\right|_{L^{2}}^{2} + (\mu+\gamma)\left|b-\overline{b}\right|_{L^{2}}^{2} \right)$$

Because

$$\frac{kfb}{K_b+f} - \frac{k\overline{fb}}{K_b+\overline{f}}\Big|_{L^2}^2 = \left|\frac{kfb}{K_b+f} - \frac{kf\overline{b}}{K_b+f} + \frac{kf\overline{b}}{K_b+f} - \frac{k\overline{fb}}{K_b+f}\Big|_{L^2}^2$$
$$\leq c(k,\mu,\gamma) \left(\left|\frac{kf}{K_b+f}(b-\overline{b})\right|_{L^2}^2 + \left|\frac{k\overline{b}K_b(f-\overline{f})}{(K_b+f)(K_b+\overline{f})}\right|_{L^2}^2\right)$$
$$\leq c(K_b,k,\mu,\gamma) \left(|b-\overline{b}|_{L^2}^2 + |\overline{b}(f-\overline{f})|_{L^2}^2\right)$$

yields, using Hölder's inequality,

$$\left|\frac{kfb}{K_b+f} - \frac{k\overline{fb}}{K_b+\overline{f}}\right|_{L^2}^2 \le c(K_b, k, \mu, \gamma) \left(|b-\overline{b}|_{L^2}^2 + |\overline{b}|_{L^4}^2 |f-\overline{f}|_{L^4}^2\right) \\\le c(R, K_b, k, \mu, \gamma) \left(||b-\overline{b}||_{H_0^1}^2 + ||f-\overline{f}||_{H_0^1}^2\right).$$

Similarly, we also obtain the following inequality

$$\left|\frac{knb}{K_b+n} - \frac{k\overline{n}\overline{b}}{K_b+\overline{n}}\right|_{L^2}^2 \le c(R, K_b, k, \mu, \gamma) \left(||b-\overline{b}||_{H^1_0}^2 + ||n-\overline{n}||_{H^1_0}^2\right).$$

So, we have

$$|F_1(b, f, n) - F_1(\overline{b}, \overline{f}, \overline{n})|_{L^2}^2 \le c(R, K_b, k, \mu, \gamma) \left(||b - \overline{b}||_{H_0^1}^2 + ||f - \overline{f}||_{H_0^1}^2 + ||n - \overline{n}||_{H_0^1}^2 \right).$$

Analogously,

$$|F_{2}(b, f, n) - F_{2}(\overline{b}, \overline{f}, \overline{n})|_{L^{2}}^{2} \leq c(R, k, K_{b}, r, K) \left(||f - \overline{f}||_{H_{0}^{1}}^{2} + ||b - \overline{b}||_{H_{0}^{1}}^{2} \right),$$

$$|F_{3}(b, f, n) - F_{3}(\overline{b}, \overline{f}, \overline{n})|_{L^{2}}^{2} \leq c(R, k, K_{b}, \mu, \beta) \left(||n - \overline{n}||_{H_{0}^{1}}^{2} + ||b - \overline{b}||_{H_{0}^{1}}^{2} \right).$$

Therefore,

 $F = (F_1, F_2, F_3) : X^{1/2} = \mathcal{V}^+ \longrightarrow X = \mathcal{H}^+$ is locally Lipschitz.

Sketch of proof

See Positivity preserving: Using Theorem 2.1 in [Efendiev, M.A. and Eberl, H.J. 2007]

Solution Local Lipschitz:

local non-negative mild solution + priori estimate of solutions (see later on)

=> global non-negative mild solution

Reminder

Mild solution:

$$u(t) = e^{-At}u_0 + \int_0^t e^{-A(t-s)}F(u(s))ds.$$

$$u := (b, f, n)^t, F(u) := (F_1(u), F_2(u), F_3(u))^t.$$

$$A := -\begin{pmatrix} D_b & 0 & 0\\ 0 & D_f & 0\\ 0 & 0 & D_n \end{pmatrix} \Delta_D$$

Reminder

The operator

$$A := - \begin{pmatrix} D_b & 0 & 0\\ 0 & D_f & 0\\ 0 & 0 & D_n \end{pmatrix} \Delta_D$$

is positive and self-adjoint in \mathcal{H} and has compact inverse. Consider an orthonormal basis in $H_0^1(\Omega)$ consisting of eigenfunctions $e_j \in H_0^1(\Omega), j = 1, 2, ...,$ of the operator $-\Delta_D$ corresponding to the eigenvalues

$$0 < \lambda_1 \leq \lambda_2 \leq \dots, \lambda_j \longrightarrow \infty \text{ as } j \longrightarrow \infty.$$

For $u = (b, f, n)^t \in \mathcal{V}$, we have

$$u = \left(\sum_{j=1}^{\infty} \langle b, e_j \rangle e_j, \sum_{j=1}^{\infty} \langle f, e_j \rangle e_j, \sum_{j=1}^{\infty} \langle n, e_j \rangle e_j\right)^t,$$
$$Au = \left(\sum_{j=1}^{\infty} D_b \lambda_j \langle b, e_j \rangle e_j, \sum_{j=1}^{\infty} D_f \lambda_j \langle f, e_j \rangle e_j, \sum_{j=1}^{\infty} D_n \lambda_j \langle n, e_j \rangle e_j\right)^t.$$

Reminder

Hence $e^{-tA}: \mathcal{V} \to \mathcal{V}$ defined by

$$e^{-tA}u := \left(\sum_{j=1}^{\infty} e^{-D_b\lambda_j t} \langle b, e_j \rangle e_j, \sum_{j=1}^{\infty} e^{-D_f\lambda_j t} \langle f, e_j \rangle e_j, \sum_{j=1}^{\infty} e^{-D_n\lambda_j t} \langle n, e_j \rangle e_j\right)^t$$

is an analytic semigroup in \mathcal{V} generated by the operator A.

We denote the fractional power spaces associated to A by

$$X^{\alpha} = \left(\mathcal{D}(A^{\alpha}), (., .)_{X^{\alpha}}\right), \ \alpha \in \mathbb{R}.$$

The inner product in X^{α} is given by

$$(u,v)_{X^{\alpha}} = (A^{\alpha}u, A^{\alpha}v)_{X^{0}}, \ u,v \in \mathcal{D}(A^{\alpha}),$$

where

$$\mathcal{D}(A^{\alpha}) = \begin{cases} u = \begin{pmatrix} \sum_{j=1}^{\infty} \langle b, e_j \rangle e_j \\ \sum_{j=1}^{\infty} \langle f, e_j \rangle e_j \end{pmatrix} : \begin{cases} \sum_{j=1}^{\infty} |D_b \lambda_j|^{2\alpha} |\langle b, e_j \rangle|^2 < \infty \\ \sum_{j=1}^{\infty} |D_f \lambda_j|^{2\alpha} |\langle f, e_j \rangle|^2 < \infty \\ \sum_{j=1}^{\infty} |D_n \lambda_j|^{2\alpha} |\langle n, e_j \rangle|^2 < \infty \end{cases}$$

SAMI

Reminder

and

$$A^{\alpha}u = \left(\sum_{j=1}^{\infty} D_b^{\alpha}\lambda_j^{\alpha}\langle b, e_j\rangle e_j, \sum_{j=1}^{\infty} D_f^{\alpha}\lambda_j^{\alpha}\langle f, e_j\rangle e_j, \sum_{j=1}^{\infty} D_n^{\alpha}\lambda_j^{\alpha}\langle n, e_j\rangle e_j\right)^t.$$

In these notations,

、 /

$$X^1 = (\mathcal{D}(-\Delta_D))^3, \ X^{\frac{1}{2}} = \mathcal{V}, \ X^0 = \mathcal{H}, \ X^{-\frac{1}{2}} = \mathcal{V}'.$$

The operator A in X^0 can be extended or restricted, respectively, to a positive sectorial operator in X^{α} with domain $X^{\alpha+1}$, $\alpha \in \mathbb{R}$, and the corresponding semigroups e^{-At} , $t \geq 0$, in X^{α} are obtained from each other by natural restrictions and extensions. Moreover, if $\beta \leq \alpha$ we have $e^{-At}(X^{\beta}) \subset X^{\alpha}$ and

$$||e^{-At}||_{\mathcal{L}(X^{\beta};X^{\alpha})} \leq \frac{c_{\alpha,\beta}}{t^{\alpha-\beta}}, \ t > 0,$$

for some constant $c_{\alpha,\beta} \ge 0$, where $||.||_{\mathcal{L}(V;W)}$ denotes the norm of a linear operator between the normed spaces V and W (see, e.g., Section 2.1.1 in [Temam, R. 1997])

SAMI

Existence of a finite-dimensional global attractor

Solutions Second Example: Seco

Conclusions and Perspectives

Theorem 2

```
The semigroup \{S(t)\}_{t\in\mathbb{R}_+} associated with (4-6) processes a
```

global attractor \mathcal{A} in \mathcal{V}^+ provided

```
\lambda_1 D_b + \mu + \gamma - 2k > 0
```

where $\lambda_1 > 0$ is the first eigenvalue of the operator $-\Delta_D$ on the domain Ω with the homogeneous Dirichlet boundary condition.

Sketch of proof

(a) Existence of an absorbing set in \mathcal{V}^+ .

+) absorbing set in \mathcal{H}^+

-)
$$|b(t)|_{L^2}^2 \le |b(0)|_{L^2}^2 e^{-\lambda t}, \lambda = -2(\lambda_1 D_b + \mu + \gamma - 2k).$$

-)
$$|f(t)|_{L^2}^2 \le (|f(0)|_{L^2}^2 - c_1) e^{-\lambda_1 D_f t} + c_1, \ c_1 = \frac{4rK^2}{27\lambda_1 D_f}.$$

-)
$$|n(t)|_{L^2}^2 \le \left(|n(0)|_{L^2}^2 - \frac{c_2}{\lambda_1 D_n - \lambda} |b(0)|_{L^2}^2 \right) e^{-\lambda_1 D_n t} + \frac{c_2}{\lambda_1 D_n - \lambda} |b(0)|_{L^2}^2 e^{-\lambda t}.$$

 \Rightarrow the ball $B_{\mathcal{H}^+}(0, R)$ is a bounded absorbing set in \mathcal{H}^+ .

Sketch of proof

- (a) Existence of an absorbing set in \mathcal{V}^+ .
- +) absorbing set in \mathcal{V}^+

-)
$$||b(t)||_{H_0^1}^2 \le c_3, \ c_3 = \frac{2(2k-\mu-\gamma)}{2D_b}R^2 + \frac{R^2}{2D_b} + \frac{(2k+\mu+\gamma)^2}{4D_b}R^2, \ \forall t \ge T+1.$$

-)
$$||f(t)||_{H_0^1}^2 \le c_6, \ c_6 = (c_4 + c_5)e^{2r}, \ \forall t \ge T + 2.$$

•)
$$||n(t)||_{H_0^1}^2 \le c_9, \ c_9 = c_8 + c_7, \ \forall t \ge T + 1.$$

We choose $R_{\max} = \max\{2c_3, 2c_6, 2c_9\}$, it implies that $B_{\mathcal{V}^+}(0, R_{\max})$ is a bounded absorbing set in \mathcal{V}^+ for the semigroup S(t).

Sketch of proof

(a) Existence of an absorbing set in \mathcal{V}^+ .

(b) Asymptotic compactness of the semigroup.

Lemma 1 Let $B \subset X^{\frac{1}{2}}$ be a bounded set. Then, for every $T^* > 0$ there exists a constant κ such that

$$||S(T^*)u - S(T^*)v||_{X^{\frac{1}{2}}} \le \kappa ||u - v||_{X^0}, \ \forall u, v \in B.$$

Sketch of proof

Now, we assume that the set $B \subset X^{\frac{1}{2}}$ is bounded.

Let T > 0 and $x_n \in B, t_n \ge 0, n \in \mathbb{N}$, be sequences such that $t_n \longrightarrow \infty$.

 $\Rightarrow \{S(t_n - T)x_n : t_n \ge T, n \in \mathbb{N}\}$ is bounded in $X^{\frac{1}{2}}$

 $=> v_k := S(t_{n_k} - T)x_{n_k}$ converging weakly to v in $X^{\frac{1}{2}}$ and strongly to v in X^0

Lemma 1 => $||S(T)v_k - S(T)v||_{X^{\frac{1}{2}}} \le \kappa ||v_k - v||_{X^0}$,

=> asymptotic compactness of the semigroup.

Fractal dimension estimates of the global attractor

The global attractor \mathcal{A} has finite fractal dimension

[Efendiev et al. 2005]

Lemma 2 Let V and W be Banach spaces such that the embedding $V \hookrightarrow W$ is dense and compact, and let $S(t), t \ge 0$, be a semigroup in V. We assume $A \subset V$ is a compact invariant set and the semigroup satisfies the smoothing property: There exist $T^* > 0$ and a constant $\kappa \ge 0$ such that

$$||S(T^*)u - S(T^*)v||_V \le \kappa ||u - v||_W, \ \forall u, v \in \mathcal{A}.$$

Then, the fractal dimension of \mathcal{A} in V is finite.

We now can apply Lemma 2 to the semigroup $S(t), t \ge 0$, with $V = X^{\frac{1}{2}}$ and $W = X^{0}$ to get the finiteness of the fractal dimension of the global attractor.

Introduction

Existence and Uniqueness of global mild solutions

Existence of a finite-dimensional global attractor

Solutions Local ultimate boundedness of global solutions

Conclusions and Perspectives

Local ultimate boundedness of global solutions

Theorem 3

The semigroup $\{S(t)\}_{t\in\mathbb{R}_+}$ associated with (4-6) processes local

```
absorbing sets in \mathcal{V}^+.
```

Idea of proof

+)
$$|b+f+n|_{L^1} \leq c(K, |b_0|_{L^1}, |f_0|_{L^1}, |n_0|_{L^1}).$$

+) $|b|_{L^2}^2 \le \varepsilon |\nabla b|_{L^2}^2 + c(\varepsilon) |b|_{L^1}^2, \ \forall b \in H_0^1(\Omega), \ \forall \epsilon > 0.$ see in [Robinson J.C. 2001]

+) $|b(t)|_{L^2}^2 \leq |b_0|_{L^2}^2 e^{-(\lambda_1 D_b + \mu + \gamma)t} + c, \ c = c(K, K_b, k, |b_0|_{L^1}, |f_0|_{L^1}, |n_0|_{L^1}).$

Local ultimate boundedness of global solutions

Idea of proof

+)
$$|b+f+n|_{L^1} \leq c(K, |b_0|_{L^1}, |f_0|_{L^1}, |n_0|_{L^1}).$$

$$\begin{aligned} \frac{d}{dt}|b+f+n|_{L^1} &- \int_{\Omega} (D_b \Delta b + D_f \Delta f + D_n \Delta n) dx = (\beta \mu - \mu - \gamma)|b|_{L^1} + r \int_{\Omega} f dx - \frac{r}{K} \int_{\Omega} f^2 dx \\ &\leq r \int_{\Omega} f dx - \frac{r}{K} \int_{\Omega} f^2 dx. \end{aligned}$$

In addition, using Stokes' formula, we have

$$\int_{\Omega} (D_b \Delta b + D_f \Delta f + D_n \Delta n) dx = \int_{\partial \Omega} \left(\frac{\partial b}{\partial \nu} + \frac{\partial f}{\partial \nu} + \frac{\partial n}{\partial \nu} \right) ds \le 0,$$

Hence,

$$\frac{d}{dt}|b+f+n|_{L^1} \le r \int_{\Omega} f dx - \frac{r}{K} \int_{\Omega} f^2 dx.$$

Local ultimate boundedness of global solutions

Idea of proof

Using Cauchy's inequality, we have

$$-f^2 \le -Kf + \frac{K^2}{4}.$$

Hence,

$$\frac{d}{dt}|b+f+n|_{L^1} \le \frac{K^2}{4},$$

which yields

$$|b + f + n|_{L^1} \le c(K, |b_0|_{L^1}, |f_0|_{L^1}, |n_0|_{L^1}).$$

Introduction

Existence and Uniqueness of global mild solutions

Existence of a finite-dimensional global attractor

Solutions Second Second

Conclusions and Perspectives

Conclusions and perspectives

 $\Im \lambda_1 D_b + \mu + \gamma - 2k > 0$: existence of a finite-dimensional global attractor

- When the condition is invalid: local ultimate boundedness of global solutions
- Optimal control, other biological systems...

Sketch of proof

(a) Existence of an absorbing set in \mathcal{V}^+ .

+) absorbing set in \mathcal{H}^+

-)
$$|b(t)|_{L^2}^2 \le |b(0)|_{L^2}^2 e^{-\lambda t}, \lambda = -2(\lambda_1 D_b + \mu + \gamma - 2k).$$

-)
$$|f(t)|_{L^2}^2 \le (|f(0)|_{L^2}^2 - c_1) e^{-\lambda_1 D_f t} + c_1, \ c_1 = \frac{4rK^2}{27\lambda_1 D_f}.$$

-)
$$|n(t)|_{L^2}^2 \le \left(|n(0)|_{L^2}^2 - \frac{c_2}{\lambda_1 D_n - \lambda} |b(0)|_{L^2}^2 \right) e^{-\lambda_1 D_n t} + \frac{c_2}{\lambda_1 D_n - \lambda} |b(0)|_{L^2}^2 e^{-\lambda t}.$$

 \Rightarrow the ball $B_{\mathcal{H}^+}(0, R)$ is a bounded absorbing set in \mathcal{H}^+ .

Conclusions and perspectives

 $\Im \lambda_1 D_b + \mu + \gamma - 2k > 0$: existence of a finite-dimensional global attractor

- When the condition is invalid: local ultimate boundedness of global solutions
- Optimal control, other biological systems...

Thank you very much for your attention!

