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Cross-diffusion PDEs. . .

Many multi-species systems in biology, chemistry, and physics can be
described by reaction-diffusion systems:

∂tu − div(A(u)∇u) = f (u) in Ω, t > 0, (RD)

(A(u)∇u) · ν = 0 on ∂Ω, u(0) = u0 in Ω,

where Ω ⊂ Rd is a bounded domain, and:

u = (u1, . . . , un)> is the vector of the densities or concentrations of
the species;

A(u) = (Aij (u)) ∈ Rn×n is the diffusion matrix;

f = (f1, . . . , fn) is the vector of the reactions.

Cross-diffusion ≡ the diffusion matrix A(u) is not diagonal
⇒ some variables give contributions to the diffusion of other variables.
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. . . and the trouble they make

Independent variables u1 . . . un represent densities, concentrations ⇒ they
should be nonnegative and bounded.

Cross-diffusion ⇒ no maximum principle ⇒ the proof of these properties
is a challenging problem. Weak solutions may be unbounded.

Sometimes the diffusion matrix is neither symmetric nor positive definite
⇒ even the local-in-time existence of solutions may be nontrivial.
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The boundedness-by-entropy principle

Boundedness-by-entropy principle: a systematic method to prove
the existence of global-in-time nonnegative bounded weak solutions
to cross-diffusion systems possessing a formal gradient-flow structure:

∂tu − div

(
B∇δH

δu

)
= f (u).

B is a positive semidefinite matrix;
δH
δu is the variational derivative of the entropy H[u] =

∫
Ω

h(u)dx ;

h : D ⊂ Rn → [0,∞) is the entropy density.

Let us introduce the entropy variable: w = Dh(u). The above system
can be formulated as:

∂tu − div(B(w)∇w) = f (u), B(w) = A(u)(D2h(u))−1.

This formulation makes only sense if Dh : D → Rn is invertible.
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The boundedness-by-entropy principle

There are two consequences of this formulation.

1 If f (u) · w ≤ 0, the entropy H is a Lyapunov functional along
solutions:

dH
dt

=

∫
Ω

∂tu · wdx ≤ −
∫

Ω

∇w : B(w)∇wdx

= −
∫

Ω

∇u : (D2h)A(u)∇udx ≤ 0,

taking into account that B(w) (or equivalently (D2h)A(u)) is
assumed to be positive semidefinite.

2 Because of the invertibility of Dh, the original variable satisfies
u(x , t) = (Dh)−1(w(x , t)) ∈ D, and if D is a bounded domain, we
obtain automatically L∞ bounds without the use of a maximum
principle.

Nicola Zamponi, Ansgar Jüngel An entropy-based method for the analysis of cross-diffusion PDEs



The boundedness-by-entropy principle: key result

Theorem (Boundedness-by-entropy principle)

Let D ⊂ (0, 1)n be a bounded domain, u0 ∈ L1(Ω; D), and assume that:

H1 There exists a convex function h ∈ C 2(D; [0,∞)) such
that its derivative Dh : D → Rn is invertible.

H2 There exist α∗ > 0, m1, . . . ,mn ∈ [0, 1] such that:

z>D2h(u)A(u)z ≥ α∗
n∑

i=1

u
2(mi−1)
i z2

i ∀z ∈ Rn, u ∈ D.

H3 It holds A ∈ C 0(D;Rn×n) and there exists cf > 0 such
that for all u ∈ D, f (u) · Dh(u) ≤ cf (1 + h(u)).

Then there exists a weak solution u : Ω× (0,∞)→ D to (RD),

u ∈ L2
loc(0,∞; H1(Ω;R2)), ∂tu ∈ L2

loc(0,∞; H1(Ω;R2)′).

For the proof see: A. Jüngel, The boundedness-by-entropy principle for
cross-diffusion systems (2014).
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Models with linear diffusivities

We show a class of cross-diffusion systems for n = 2 species, whose
diffusivities depend linearly on the solution and for which global bounded
weak solutions exist.

Aij (u) = αij + βij u1 + γij u2 i , j = 1, 2, (LDIFF)

where αij , βij , γij are real numbers.

Derivation: master equation for a random walk on a lattice in the
diffusion limit. Transition rates depending linearly on the species’
densities.
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Models with linear diffusivities: examples

Examples of cross-diffusion systems with linear diffusivities:

ion transport through narrow channels;

population dynamics with complete segregation;

Most prominent example: population systems of
Shigesada-Kawasaki-Teramoto type (SKT) in several space
dimensions:

A(u) =

(
a10 + 2a11u1 + a12u2 a12u1

a21u2 a20 + a21u1 + 2a22u2

)
,

fi (u) = (bi0 − bi1u1 − bi2u2)ui , i = 1, 2.

Models for two competitive species in heterogeneous evironments.
aij ≥ 0, i , j = 0, 1, 2.
a11, a22 ≡ self-diffusion, a12, a21 ≡ cross-diffusion coefficients.
b11, b22 ≡ intra-specific, b12, b21 ≡ inter-specific competition
constants.

Nicola Zamponi, Ansgar Jüngel An entropy-based method for the analysis of cross-diffusion PDEs



Models with linear diffusivities: main result

Theorem (Case of linear diffusivities)

Let D = {(u1, u2) ∈ R2 : u1 > 0, u2 > 0, u1 + u2 < 1},
u0 = (u0

1 , u
0
2) ∈ L1(Ω; D), A(u) given by (LDIFF) satisfying:

α12 = α21 = β21 = γ12 = 0, β22 = β11 − γ21, (C1)

γ11 = γ22 − β12, γ21 = α22 − α11 + β12, (C2)

α11 > 0, α22 > 0, β12 < α11 + min{β11, γ22}, (C3)

α11 + β11 ≥ 0, α22 + γ22 ≥ 0, (C4)

and let fi (u) = ui gi (u), where gi (u) is continuous in D and nonpositive in
{1− ε < u1 + u2 < 1} for some ε > 0 (i = 1, 2). Then there exists a
weak solution u = (u1, u2) : Ω× (0,∞)→ D to (RD) satisfying

u ∈ L2
loc(0,∞; H1(Ω;R2)), ∂tu ∈ L2

loc(0,∞; H1(Ω;R2)′).

If the population approaches its total capacity u1 + u2 = 1, the reaction
terms are nonpositive and lead to a decrease of the population.
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Idea of the proof

Idea of the proof of Theorem 2: apply the general existence result
stated in Theorem 1. ⇒ Verify assumptions H1, H2, H3.

Assumption H1 satisfied with entropy density:

h(u) = u1(log u1−1)+u2(log u2−1)+(1−u1−u2)(log(1−u1−u2)−1),

defined on D = {(u1, u2) : u1 > 0, u2 > 0, u1 + u2 < 1}.

Assumption H3 satisfied: fi (u)(Dh)i (u) ≤ c for i = 1, 2.

fi (u)(Dh)i (u) = gi (u)ui log ui − ui gi (u) log(1− u1 − u2).

gi (u), ui log ui bounded in D ⇒ gi (u)ui log ui bounded in D.

− ui gi (u) log(1− u1 − u2) ≤ cε in Dε := {0 < u1 + u2 ≤ 1− ε}.

gi (u) ≤ 0 in D\Dε ⇒ −ui gi (u) log(1− u1 − u2) ≤ 0 in D\Dε.

Nicola Zamponi, Ansgar Jüngel An entropy-based method for the analysis of cross-diffusion PDEs



Proving that H2 holds

Assumption H2 requires the matrix M(u) := (D2h(u))A(u) to be positive
definite for u ∈ D. We have to deal with twelve parameters αij , βij , and
γij ⇒ the proof is not trivial .

In order to reduce the complexity of the problem, we assume that M(u)
is symmetric, motivated by the Onsager symmetry principle in
non-equilibrium thermodynamics. This yields seven conditions, and we
are left with five parameters.
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Proving that H2 holds

By Sylvester’s criterion, the positive semidefiniteness follows if the
diagonal terms and the determinant of M(u) are nonnegative.

⇒ Three multivariate quadratic polynomials in (u1, u2) have to be
nonnegative.

⇒ Use the strong maximum principle applied to such polynomials to
get conditions on the coefficients.

We stress the fact that the maximum principle is not needed to
prove the L∞ bounds but to solve the algebraic problem.
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Verification of Hypothesis H2

We require that the matrix M(u) is symmetric. This leads to the
conditions:

α12 = α21 = β21 = γ12 = 0, β22 = β11 − γ21,

γ11 = γ22 − β12, γ21 = α22 − α11 + β12,

and we are left with the five parameters α11, α22, β11, β12, and γ22.

A(u) =

(
α11 0
0 α22

)
+u1

(
β11 β12

0 β11 − γ21

)
+u2

(
γ22 − β12 0

α22 − α11 + β12 γ22

)
.
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Verification of Hypothesis H2

Lemma (Positive semidefiniteness of M)

The matrix M(u) is positive semidefinite for all u ∈ D if and only if

α11 ≥ 0, α22 ≥ 0, β12 ≤ α11 + min{β11, γ22}, (A1)

α11 + β11 ≥ 0, α22 + γ22 ≥ 0. (A2)
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Proof of lemma 3, step 1

Step 1: conditions (A1), (A2) are necessary. We first prove that the
positive semidefiniteness of M(u) implies (A1), (A2) by studying M(u)
close to the vertices of D. To this end, we define the matrix-valued
functions, defined for s ∈ (0, 1

2 ):

F1(s) = sM(s, s), F2(s) = sM(1− 2s, s), F3(s) = sM(s, 1− 2s).

We easily compute the limits:

F 0
i ≡ lim

s→0+
Fi (s) i = 1, 2, 3.

Since M(u) is assumed to be positive semidefinite on D, also F 0
i must be

positive semidefinite for i = 1, 2, 3.
Sylvester’s criterion applied to F 0

1 ,F
0
2 ,F

0
3 yields conditions (A1), (A2).
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Proof of lemma 3, step 2

Step 2: Sign of the diagonal elements of M.

Claim. If (A1), (A2) hold then one of the two coefficients M11 or M22 is
positive in D unless M is positive semidefinite in D.

f1(u2, u3) ≡ (1− u2 − u3)u3M11(1− u2 − u3, u2), (u2, u3) ∈ D,

f2(u1, u3) ≡ (1− u1 − u3)u3M22(u1, 1− u1 − u3), (u1, u3) ∈ D.

Notice that:

f1 and f2 are nonnegative on ∂D (easy direct computations).

∆(u2,u3)f1 = −∆(u1,u3)f2 = constant in D.

⇒ either ∆(u2,u3)f1 ≤ 0 or ∆(u1,u3)f2 ≤ 0 in D.

By the strong maximum principle, there exists i ∈ {1, 2} such that
fi > 0 in D unless fi ≡ 0 in D. This means that Mii > 0 in D unless
Mii ≡ 0 in D.
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Proof of lemma 3, degenerate case

What if one of the coefficients M11 or M22 is identically zero in D?

In such a case M is positive semidefinite in D. In fact, straightforward
computations lead to:

M11 ≡ 0 in D ⇒ M = α22

(
0 0
0 1/u2

)
,

M22 ≡ 0 in D ⇒ M = α11

(
1/u1 0

0 0

)
,

and since α11 ≥ 0 and α22 ≥ 0, the above matrices are positive
semidefinite.
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Proof of lemma 3, step 3

Step 3: Sign of the determinant of M.

By Step 2, we can assume that one of the two coefficients M11 or M22 is
positive in D.

det M = det((D2h)A) = det(D2h) det A.

Since det D2h > 0, then det M ≥ 0 if and only if det A ≥ 0.

Nicola Zamponi, Ansgar Jüngel An entropy-based method for the analysis of cross-diffusion PDEs



Proof of lemma 3, step 3

It is straightforward to see that det A ≥ 0 on ∂D (direct computations).

Next, we consider the Hessian C = D2 det A(u) with respect to u. Since
det A is a (multivariate) quadratic polynomial in u, C is a symmetric
constant matrix satisfying

det C = −
(
β11β12 + γ22(α11 − α22 − β12)

)2 ≤ 0.

Thus, one of the two eigenvalues of C is nonpositive, say λ ≤ 0. Let
v ∈ R2\{0} be a corresponding eigenvector, i.e. Cv = λv .
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Proof of lemma 3, step 3

Let u ∈ D be arbitrary. It exists a unique closed segment σ ⊂ D,

σ ‖ v , u ∈ σ, ∂σ ⊂ ∂D.

We can write σ = u + vI, I ⊂ R suitable interval.

Let φ(s) = det A(u + sv) for s ∈ I.

⇒ φ′′(s) = v>Cv = λ|v |2 ≤ 0 for s ∈ I.

⇒ φ is concave and attains its minimum at the extreme points of I.

⇒ min
σ

det A = min
∂σ

det A. But ∂σ ⊂ ∂D and det A ≥ 0 on ∂D.

⇒ det A ≥ 0 on σ. u ∈ σ ⇒ det A(u) ≥ 0.
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Verification of Hypothesis H2

Lemma (Strict positive definiteness of M)

Let conditions (C1)–(C4) hold. Then there exists ε > 0 such that for all
z ∈ R2 and all u ∈ D,

z>M(u)z ≥ ε
(

z2
1

u1
+

z2
2

u2

)
.

In particular, Hypothesis H2 is fulfilled with m1 = m2 = 1
2 :

z>M(u)z ≥ α∗
2∑

i=1

u
2(mi−1)
i z2

i ∀z ∈ R2, u ∈ D.
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Proof of Lemma 4

The claim is equivalent to the positive semidefiniteness of the matrix
Mε := M − εΛ for a suitable ε > 0, where

Λ =

(
1/u1 0

0 1/u2

)
= (D2h)P, P =

(
1− u1 −u1

−u2 1− u2

)
.

Thus we can write M − εΛ = (D2h)Aε with Aε = A− εP.
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Proof of Lemma 4

We observe that Aε has the same structure as A with perturbed
parameters:

A =

(
α11 0
0 α22

)
+ u1

(
β11 β12

0 β11 − γ21

)
+ u2

(
γ22 − β12 0

α22 − α11 + β12 γ22

)
,

Aε =

(
αε11 0
0 αε22

)
+ u1

(
βε11 βε12

0 βε11 − γε21

)
+ u2

(
γε22 − βε12 0

αε22 − αε11 + βε12 γε22

)
,

αε11 = α11 − ε, αε22 = α22 − ε, βε11 = β11 + ε,

βε12 = β12 + ε, γε22 = γ22 + ε.

From Lemma 4 we conclude that Mε is positive semidefinite if and only if
(A1), (A2) holds for the parameters (αε11, α

ε
22, β

ε
11, β

ε
12, γ

ε
22) instead of

(α11, α22, β11, β12, γ22).
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Proof of Lemma 4

The following conditions must hold:

α11 − ε ≥ 0, α22 − ε ≥ 0, β12 + ε ≤ α11 + min{β11, γ22},
α11 + β11 ≥ 0, α22 + γ22 ≥ 0.

Since ε > 0 is arbitrary:

α11 > 0, α22 > 0, β12 < α11 + min{β11, γ22},
α11 + β11 ≥ 0, α22 + γ22 ≥ 0.

This means that Mε is positive semidefinite for a suitable ε > 0 if and
only if (C1)–(C4) hold.
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A particular case: the SKT model

Remember the population systems of Shigesada-Kawasaki-Teramoto type
(SKT):

A(u) =

(
a10 + 2a11u1 + a12u2 a12u1

a21u2 a20 + a21u1 + 2a22u2

)
, (A-SKT)

fi (u) = (bi0 − bi1u1 − bi2u2)ui , i = 1, 2.

Models for two competitive species in heterogeneous evironments.

aij ≥ 0, i , j = 0, 1, 2.

a11, a22 ≡ self-diffusion, a12, a21 ≡ cross-diffusion coefficients.

b11, b22 ≡ intra-specific, b12, b21 ≡ inter-specific competition constants.
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About the SKT model

The existence of global weak solutions without any restriction on the
diffusivities (except positivity) is known in several space dimensions.1

Upper bounds are known if one space dimension if a10 = a20.2

If cross-diffusion is weaker than self-diffusion (i.e. a12 < a22,
a21 < a11), weak solutions are bounded and Hölder continuous.3

In the triangular case a21 = 0 the existence of global bounded
solutions has been proved.4

1L. Chen and A. Jüngel. Analysis of a multi-dimensional parabolic population
model with strong cross-diffusion. SIAM J. Math. Anal. (2004).
L. Chen and A. Jüngel. Analysis of a parabolic cross-diffusion population model
without self-diffusion. J. Diff. Eqs. (2006).

2S.-A. Shim. Uniform boundedness and convergence of solutions to cross-diffusion
systems. J. Diff. Eqs. (2002).

3D. Le. Global existence for a class of strongly coupled parabolic systems. Ann.
Math. (2006).

4Y. Choi, R. Liu, and Y. Yamada. Existence of global solutions for the
Shigesada-Kawasaki-Teramoto model with weak cross-diffusion. Discrete Cont.
Dynam. Sys. (2003).
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The SKT model: bounded weak solutions

Corollary (Bounded weak solutions to the (SKT) model)

Let the assumptions of Theorem 2 hold except that the coefficients of A,
defined in (A-SKT), are nonnegative and satisfy a10 > 0, a20 > 0 and:

a21 = a11, a22 = a12, a20 − a10 = a11 − a22 ≥ 0. (C-SKT)

Furthermore, let f (u) be given by the Lotka-Volterra terms:

fi (u) = (bi0 − bi1u1 − bi2u2)ui , i = 1, 2,

b10 ≤ min{b11, b12}, b20 ≤ min{b21, b22}.

Then there exists a bounded weak solution u = (u1, u2) to (RD)
satisfying u1, u2 ≥ 0, u1 + u2 ≤ 1 in Ω× (0,∞), and

u ∈ L2
loc(0,∞; H1(Ω;R2)), ∂tu ∈ L2

loc(0,∞; H1(Ω;R2)′).
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The SKT model: bounded weak solutions

The novelty of this corollary is not the global existence result but the
uniform boundedness of weak solutions.

With conditions (C-SKT), the diffusion matrix becomes

A(u) =

(
a10 + 2a11u1 + a12u2 a12u1

a11u2 a20 + a11u1 + 2a12u2

)
,

a12 = a11 + a10 − a20,

i.e., we are left with three parameters a10, a20, and a11.

The cross-diffusion coefficient of one species is the same as the
self-diffusion of the other species.

The self-diffusion of species 1 is larger than that for species 2 .

In the reaction term, the growth rates b10, b20 are not larger than
the intra- and inter-specific competition rates.
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Proof Corollary 5

The corollary follows from Theorem 2 by specifying the diffusivities
according to (A-SKT).

The requirement of the symmetry of H(u)A(u) leads to the conditions
a11 = a21, a22 = a12, and a20 − a10 = a11 − a22, whereas (C3), (C4)
become a10 > 0, a20 > 0, and −a12 < a10 + 2 min{a20 − a10, 0}.

Taking into account that a10 ≤ a20, the last condition is equivalent to
−a12 < a10, and this inequality holds since a10 is positive.

Finally, Hypothesis H3 follows from the inequality
gi (u) = bi0 − bi1u1 − bi2u2 ≤ bi0 −min{bi1, bi2}(u1 + u2) ≤ 0 for
1− ε < u1 + u2 < 1, where ε = min{ε1, ε2} and
εi = 1− bi0/min{bi1, bi2} ∈ (0, 1).
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