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1 Motivation

Consider an optimal control problem of the following structure:

Minimize j(u) + α
2 ‖u‖

2
X

s. t. u ≤ ub,
(1)

where j : X → R is a smooth objective functional depending on the variable
u ∈ X where is X ↪→ L2(Ω) an (infinite dimensional) Hilbert space. The
optimality conditions are

(Dj(u) + αu, ũ− u)X ≥ 0 for all ũ ∈ X ∩ Uad.

with the admissible set given by Uad := {u ∈ X | u ≤ ub} and the X-gradient
of j

(Dj(u), δu)X = j′(u)(δu).

We can rewrite this as
u = Pad(− 1

αDj(u)),

where Pad is the X-projection onto Uad,

u = argmin
X∩Uad

‖u+ 1
αDj(u)‖2X .

We want to consider semismooth Newton methods for (1), which can be analyzed
in a Banach space setting, i.e. without discretizing X. Such methods are known
to behave in a mesh independent way after discretization. By this, we mean
that we want to apply Newtons method to the equation

G(u) = u− Pad(− 1
αDj(u)) = 0.

For X = L2(Ω) this is well understood (see [1, 2, 3]). In this case Pad is
the L2-projection onto Uad, which can be written as the superposition operator
Pad(·) = min{· , ub}. Since this projection operates pointwise in space, it can
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be efficiently computed, and we can compute a linearization of G(·) using the
concept of a Newton-derivative for superposition operators. It is well known,
that a Newton method based on this can be analyzed in a Banach space setting
under a smoothing assumption on the operator v 7→ Dj(v). We obtain superlin-
ear convergence of the method if the Newton-derivatives of G(·) are uniformly
invertible, see [1, 2, 3].

Consider now the case X = H1
0 (Ω) with ‖u‖2X = ‖∇u‖2 as another example.

In this case the gradient fulfills the condition

(∇Dj(u), ∇δu) = j′(u)(δu)

and the projection maps any w ∈ H1
0 to v = Pad(w) ∈ H1

0 ∩Uad, defined as the
solution of

(∇v, ∇(ṽ − v)) ≥ f(ṽ − v) for all ṽ ∈ H1
0 ∩ Uad. (2)

where f(δv) = (∇w, ∇δv), which is an obstacle problem for v. In fact we have

u = Pad(− 1
αDj(u)) = So(− 1

αj
′(u)) (3)

where So : H−1 → H1
0 , f 7→ v is the solution operator of the obstacle problem.

Even though a closed formula for Pad does not exist, contrary to the L2-case, it
is known, that this solution operator can be realized for a suitable discretization
in (near) linear time.

To the best of the authors’ knowledge, a Newton method based on this
equation has not been derived before. Therefore we would need a representation
formula for the sensitivities of So(f) with respect to f , and an efficient way to
compute this in practice. Also we need to find a suitable concept and conditions
for differentability.

2 Outline

The questions we will try to address in this project are:

• What is a suitable concept for a Newton-derivative of Pad in the H1
0 -

context? For starters, we have to check [5, 6, 7] for known continuity and
differentability results.

• Does the derivative have a realization suitable for (efficient) practical com-
putations?

• Can a Newton method based on (3) be analyzed in a Banach space setting?
Do we observe mesh-independence in practice?

• What is the appropriate smoothing condition on Dj(·) in this context?

The practical viability of the method necessitates an efficient solution method
for (2). Ideally it should have linear complexity in the number of variables after
discretization. So additional questions are:
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• What is known about efficient solution strategies for (2)? Possible ref-
erences are [3, 4], i.e., PDAS in combination with a grid hierarchy or
continuation strategy. What about monotonous multigrid, i.e., multigrid
for the variational inequality (2)?

• How does a practical realization of the new method compare to existing
strategies?

– continuation methods . . .

– SSN based on the L2-projection (after discretization, since no Banach-
space analysis is possible)

In connection to the last questions, we will implement the algorithm for a
model optimal control problem, after discretizing X with finite elements.
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