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1 Motivation

Consider an optimal control problem of the following structure:

Minimize j(u) + %H“Hg(

(1)

s. t.ou < uy,

where j: X — R is a smooth objective functional depending on the variable
u € X where is X — L?(Q) an (infinite dimensional) Hilbert space. The
optimality conditions are

(Dj(u) + ou, 4 —u)x >0 forall & € X NUggq.

with the admissible set given by Uyq := {u € X | u < up} and the X-gradient
of j
(Dj(u), 6u)x = 7' (u)(du).
We can rewrite this as
u = Pug(—5Dj(u)),

where P, is the X-projection onto Uy,

u = argmin |lu + 2 Dj(u)[|%.
XNUgqq

We want to consider semismooth Newton methods for , which can be analyzed
in a Banach space setting, i.e. without discretizing X. Such methods are known

to behave in a mesh independent way after discretization. By this, we mean
that we want to apply Newtons method to the equation

G(u) = u — Paa(—L1Dj(u)) = 0.

For X = L?(Q) this is well understood (see [1, 2, [3]). In this case P,q is
the L?-projection onto U,q, which can be written as the superposition operator
P,q(-) = min{-,up}. Since this projection operates pointwise in space, it can



be efficiently computed, and we can compute a linearization of G(-) using the
concept of a Newton-derivative for superposition operators. It is well known,
that a Newton method based on this can be analyzed in a Banach space setting
under a smoothing assumption on the operator v — Dj(v). We obtain superlin-
ear convergence of the method if the Newton-derivatives of G(-) are uniformly
invertible, see [T}, 2], B].

Consider now the case X = H{ () with ||ul|3% = ||Vu||? as another example.
In this case the gradient fulfills the condition

(VDj(u), Vou) = j'(u)(0u)

and the projection maps any w € Hi to v = P,y(w) € H} NU,q, defined as the
solution of

(Vv, V(0 —)) > f(o—wv) forall o € Hf NUpq. (2)
where f(dv) = (Vw, Vv), which is an obstacle problem for v. In fact we have
u = Paa(=5Dj(u)) = So(— 37" (u) (3)

where S,: H=' — Hg, f = v is the solution operator of the obstacle problem.
Even though a closed formula for P,; does not exist, contrary to the L?-case, it
is known, that this solution operator can be realized for a suitable discretization
in (near) linear time.

To the best of the authors’ knowledge, a Newton method based on this
equation has not been derived before. Therefore we would need a representation
formula for the sensitivities of S,(f) with respect to f, and an efficient way to
compute this in practice. Also we need to find a suitable concept and conditions
for differentability.

2  Outline

The questions we will try to address in this project are:

e What is a suitable concept for a Newton-derivative of P,y in the H}-
context? For starters, we have to check [5l [6l [7] for known continuity and
differentability results.

e Does the derivative have a realization suitable for (efficient) practical com-
putations?

e Can a Newton method based on be analyzed in a Banach space setting?
Do we observe mesh-independence in practice?

e What is the appropriate smoothing condition on Dj(-) in this context?

The practical viability of the method necessitates an efficient solution method
for . Ideally it should have linear complexity in the number of variables after
discretization. So additional questions are:



e What is known about efficient solution strategies for ? Possible ref-
erences are [3, [], i.e., PDAS in combination with a grid hierarchy or
continuation strategy. What about monotonous multigrid, i.e., multigrid
for the variational inequality ?

e How does a practical realization of the new method compare to existing
strategies?

— continuation methods ...

— SSN based on the L?-projection (after discretization, since no Banach-
space analysis is possible)

In connection to the last questions, we will implement the algorithm for a

model optimal control problem, after discretizing X with finite elements.
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