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1 What could we do?

There are still a couple of open questions regarding error estimates for optimal control prob-
lems. Let us for instance consider an optimal control problem of the form

j(u) :=
1

2
‖Su− yd‖2L2(Ω) +

α

2
‖u‖2X → min! (1)

subject to
u ∈ Uad := {u ∈ X : ua ≤ u ≤ ub a. e. in Ω},

where S : X → H1(Ω) is the solution operator of a boundary value problem. Here, X is
some Hilbert space. It is easily possible to derive an error estimate for the finite element
approximation in the norm of X and usually, it is also easy to obtain an estimate for the
state y = Su in some Banach space Y by introducing intermediate functions and applying
stability properties of Sh from X to Y , i. e.

‖y − yh‖Y ≤ ‖(S − Sh)u‖Y + ‖Sh(u− uh)‖Y (2)

≤ c (‖(S − Sh)u‖Y + ‖u− uh‖X) (3)

For some pairs X and Y this technique leads to a sharp error estimates, but in some cases
other techniques have to be applied. An example is considered in the next section.

2 Example: an optimal control problem in H1
0(Ω)

At the last summer workshop we already discussed problem (1) with the choice X = H1
0 (Ω).

The control–to–state mapping S was the solution operator of the Poisson equation

−∆y = u in Ω, y = 0 on Γ.

We derived the optimality system

(∇y,∇v)− (u, v) = 0 ∀v ∈ H1
0 (Ω), (4)

(∇p,∇v)− (y, v) = (−yd, v) ∀v ∈ H1
0 (Ω), (5)

α(∇u,∇(v − u)) + (p, v − u) ≥ 0 ∀v ∈ Uad, (6)
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and discretized this system with piecewise linear finite elements on a conforming triangulation
Th of Ω, i. e. we searched

yh, ph ∈ Vh := {vh ∈ C0(Ω): vh is affine linear on all T ∈ Th},
uh ∈ Vh ∩ Uad.

If Ω is a convex domain with polygonal or polyhedral boundary we were able to prove the a
priori estimate

|u− uh|H1(Ω) ≤ ch
using standard techniques, and from (2) we immediately get an estimate for the state

|y − yh|H1(Ω) ≤ ch.

If we are interested in an estimate for the state in L2(Ω) the technique from (2) is not
applicable since we would get

‖y − yh‖L2(Ω) ≤ c

‖(S − Sh)u‖L2(Ω)︸ ︷︷ ︸
≤ch2

+ |u− uh|H1(Ω)︸ ︷︷ ︸
≤ch

 ≤ ch,
which is not optimal. There are two possibilities to improve this estimate:

1. We could exploit that Sh is even stable from L2(Ω) to L2(Ω) and (2) would then lead
to

‖y − yh‖L2(Ω) ≤ c
(
‖(S − Sh)u‖L2(Ω) + ‖u− uh‖L2(Ω)

)
.

It remains to prove an error estimate for the control in L2(Ω). However, this means
that we have to derive an estimate in L2(Ω) for the obstacle problem (6) using some
kind of Aubin-Nitsche method. But this is an open questions for about 40 years. We
refer to Mosco [3] who proved the convergence rate h2 for the one-dimensional obstacle
problem, but he also notes that it is in general not possible to extend the result to higher
dimensions. In a recent contribution of Steinbach [4] the Aubin-Nitsche method was
applied to certain variational inequalities on the boundary, e. g. the contact problem,
which might be useful to prove error estimates for certain boundary control problems.

2. Another approach has been presented by Meyer and Rösch [2], compare also [1] for Neu-
mann boundary control problems. The idea is to exploit superconvergence properties
of certain interpolation operators. In case of X = L2(Ω) they solved (1) with piecewise
constant controls and piecewise linear and continuous state and adjoint state. An error
estimate for the state was obtained using the decomposition

‖y − yh‖L2(Ω) ≤ ‖(S − Sh)u‖L2(Ω) + ‖Sh(u−Rhu)‖L2(Ω) + ‖Sh(Rhu− uh)‖L2(Ω), (7)

where Rh denotes the midpoint interpolant onto the space of piecewise constant func-
tions. The key step of the convergence proof is the observation, that Rhu is closer to uh
than u itself. This property is called supercloseness. Probably it is possible to extend
this idea to the optimal control problem with H1

0 (Ω)-regularization, but now, the con-
trol is discretized with piecewise linear and continuous functions and the operator Rh

should then also map onto this space. The question arises whether it is possible to find
such an interpolation operator which also possesses these superclosedness properties.
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3 Summary

The following things should be investigated / have to be done:

Implementation: Determine the convergence rates we want to prove numerically.

Aubin-Nitsche for variational inequalities: Try to understand the key steps of the Aubin-
Nitsche method presented in [4] and extend it to optimal control problems.

Error estimates for H1
0 (Ω)-regularized problems: Prove an error estimate in L2(Ω) for the

state using (7).

We can of course also discuss about error estimates for different problems, under reduced
regularity, taking the structure of the geometry into account or what ever.
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