Abstract Prof. M. Focardi

Asymptotic analysis of Ambrosio-Tortorelli energies in linearized elasticity

We provide an approximation result in the sense of Γ -convergence for energies of the form

$$\int_{\Omega} \mathscr{Q}_1(e(u)) \, dx + a \, \mathcal{H}^{n-1}(J_u) + b \, \int_{J_u} \mathscr{Q}_0^{1/2}([u] \odot \nu_u) \, d\mathcal{H}^{n-1},$$

where $\Omega \subset \mathbb{R}^n$ is a bounded open set with Lipschitz boundary, \mathcal{Q}_0 and \mathcal{Q}_1 are coercive quadratic forms on $\mathbb{M}_{sym}^{n \times n}$, a, b are positive constants, and u runs in the space of fields $SBD^2(\Omega)$, i.e., it's a special field with bounded deformation such that its symmetric gradient e(u) is square integrable, and its jump set J_u has finite (n-1)-Hausdorff measure in \mathbb{R}^n .

The approximation is performed by means of Ambrosio-Tortorelli type elliptic regularizations, the prototype example being

$$\int_{\Omega} \left(v |e(u)|^2 + \frac{(1-v)^2}{\varepsilon} + \gamma \varepsilon |\nabla v|^2 \right) dx,$$

where $(u, v) \in H^1(\Omega, \mathbb{R}^n) \times H^1(\Omega)$, $\varepsilon \leq v \leq 1$ and $\gamma > 0$.