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Let us consider the following problem of the
calculus of variations:∫ T

0
f(v(t), v′(t))dt→ min, (P0)

v : [0, T ] → Rn is an absolutely continuous function

such that v(0) = y, v(T ) = z.

Here T is a positive number, y and z are el-
ements of the n-dimensional Euclidean space
Rn and an integrand f : Rn × Rn → R1 is a
continuous function.

We are interested in the structure of solutions
of the problem (P0) when y, z and T vary and
T is sufficiently large.

Assume that the function f is strictly convex
and differentiable and satisfies the following
growth condition:

f(y, z)/(|y|+ |z|) → ∞ as |y|+ |z| → ∞.

Here we denote by | · | the Euclidean norm in
Rn and by < ·, · > the scalar product in Rn.
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In order to analyze the structure of minimizers

of the problem (P0) we consider the auxiliary

minimization problem:

f(y,0) → min, y ∈ Rn. (P1)

It follows from the growth condition and the

strict convexity of f that the problem (P1) has

a unique solution which will be denoted by ȳ.

Clearly,

∂f/∂y(ȳ,0) = 0.

Define an integrand L : Rn ×Rn → R1 by

L(y, z) = f(y, z)−f(ȳ,0)− < ∇f(ȳ,0), (y, z)−(ȳ,0) >

= f(y, z)− f(ȳ,0)− < (∂f/∂z)(ȳ,0), z > .

Clearly L is also differentiable and strictly con-

vex and satisfies the same growth condition as

f :

L(y, z)/(|y|+ |z|) → ∞ as |y|+ |z| → ∞.
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Since f and L are strictly convex we obtain

that

L(y, z) ≥ 0 for all (y, z) ∈ Rn ×Rn

and

L(y, z) = 0 if and only if y = ȳ, z = 0.

Consider the following auxiliary problem of the

calculus of variations:∫ T

0
L(v(t), v′(t))dt→ min, (P2)

v : [0, T ] → Rn is an absolutely continuous function

such that v(0) = y, v(T ) = z,

where T > 0 and y, z ∈ Rn.
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It is easy to see that for any absolutely contin-

uous function x : [0, T ] → Rn with T > 0,∫ T

0
L(x(t), x′(t))dt

=
∫ T

0
[f(x(t), x′(t))

−f(ȳ,0)− < (∂f/∂z)(ȳ,0), x′(t) >]dt

=
∫ T

0
f(x(t), x′(t))dt+ Tf(ȳ,0)

− < (∂f/∂z)(ȳ), x(T )− x(0) > .

These equations imply that the problems (P0)

and (P2) are equivalent: a function x : [0, T ] →
Rn is a solution of the problem (P0) if and only

if it is a solution of the problem (P2).
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The integrand L : Rn × Rn → R1 has the fol-

lowing property:

(C) If {(yi, zi)}∞i=1 ⊂ Rn ×Rn satisfies

lim
i→∞

L(yi, zi) = 0,

then limi→∞ yi = ȳ and limi→∞ zi = 0.

Indeed, assume that

{(yi, zi)}∞i=1 ⊂ Rn ×Rn and lim
i→∞

L(yi, zi) = 0.

By the growth condition the sequence {(yi, zi)}∞i=1
is bounded. Let (y, z) be a limit point of the

sequence {(yi, zi)}∞i=1. Then,

L(y, z) = lim
i→∞

L(yi, zi) = 0

and (y, z) = (ȳ,0).

This implies that (ȳ,0) = limi→∞(yi, zi).
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Let y, z ∈ Rn, T > 2 and a function x̄ : [0, T ] →
Rn be an optimal solution of the problem (P0).

Then x̄ is also an optimal solution of the prob-

lem (P2). We will show that∫ T

0
L(x̄(t), x̄′(t))dt ≤ 2c0(|y|, |z|)

where c0(|y|, |z|) is a constant which depends

only on |y| and |z|.

Define a function x : [0, T ] → Rn by

x(t) = y+ t(ȳ − y), t ∈ [0,1],

x(t) = ȳ, t ∈ [1, T − 1],

x(t) = ȳ+ (t− (T − 1))(z − ȳ), t ∈ [T − 1, T ].
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It follows from the definition of x̄ and x that∫ T

0
L(x̄(t), x̄′(t))dt

≤
∫ T

0
L(x(t), x′(t))dt

=
∫ 1

0
L(x(t), ȳ − y)dt

+
∫ T−1

1
L(ȳ,0)dt

+
∫ T

T−1
L(x(t), z − ȳ)dt

=
∫ 1

0
L(x(t), ȳ − y)dt

+
∫ T

T−1
L(x(t), z − ȳ)dt.
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It is not difficult to see that the integrals∫ 1

0
L(x(t), ȳ − y)dt and

∫ T

T−1
L(x(t), z − ȳ)dt

do not exceed a constant c0(|y|, |z|) which de-

pends only on |y|, |z|.

Thus ∫ T

0
L(x̄(t), x̄′(t))dt ≤ 2c0(|y|, |z|).

It is very important that in this inequality the

constant c0(|y|, |z|) does not depend on T .

We denote by mes(E) the Lebesgue measure

of a Lebesgue mesurable set E ⊂ R1.
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Now let ϵ be a positive number. By the prop-
erty (C) there is δ > 0 such that if (y, z) ∈
Rn ×Rn and L(y, z) ≤ δ, then

|y − ȳ|+ |z| ≤ ϵ.

Then by the choice of δ and the inequality∫ T

0
L(x̄(t), x̄′(t))dt ≤ 2c0(|y|, |z|),

mes{t ∈ [0, T ] :

|(x̄(t), x̄′(t))− (ȳ,0)| > ϵ}

≤ mes{t ∈ [0, T ] : L(x̄(t), x̄′(t)) > δ}

≤ δ−1
∫ T

0
L(x̄(t), x̄′(t))dt

≤ δ−12c0(|y|, |z|)

and

mes{t ∈ [0, T ] :

|x̄(t)− ȳ| > ϵ} ≤ δ−12c0(|y|, |z|).
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Therefore the optimal solution x̄ spends most

of the time in an ϵ-neighbor- hood of the point

ȳ. The Lebesgue measure of the set of all

points t, for which x̄(t) does not belong to this

ϵ-neighborhood, does not exceed the constant

2δ−1c0(|y|, |z|) which depends only on |y|, |z|
and ϵ and does not depend on T . Following

the tradition, the point ȳ is called the turn-

pike. Moreover we can show that the set

{t ∈ [0, T ] : |x̄(t)− ȳ| > ϵ}

is contained in the union of two intervals [0, τ1]∪
[T − τ2, T ], where 0 < τ1, τ2 ≤ 2δ−1c0(|y|, |z|).
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Under the assumptions posed on f , the struc-

ture of optimal solutions of the problem (P0) is

rather simple and the turnpike ȳ is calculated

easily. On the other hand the proof is strongly

based on the convexity of f and its time in-

dependence. The approach used in the proof

cannot be employed to extend the turnpike re-

sult for essentially larger classes of variational

problems. For such extensions we need other

approaches and ideas. The question of what

happens if the integrand f is nonconvex and

nonautonomous seems very interesting. What

kind of turnpike and what kind of convergence

to the turnpike do we have for general noncon-

vex nonautonomous integrands? The follow-

ing example helps to understand the problem.
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Let

f(t, x, u) = (x− cos(t))2 + (u+ sin(t))2,

(t, x, u) ∈ R1 ×R1 ×R1

and consider the family of the variational prob-

lems ∫ T2

T1
[(v(t)− cos(t))2

+(v′(t) + sin(t))2]dt→ min, (P3)

v : [T1, T2] → R1 is an absolutely continuous

function such that v(T1) = y, v(T2) = z,

where y, z, T1, T2 ∈ R1 and T2 > T1. The in-

tegrand f depends on t, for each t ∈ R1 the

function f(t, ·, ·) : R2 → R1 is convex, and for

each x, u ∈ R1 \ {0} the functon f(·, x, u) :

R1 → R1 is nonconvex. Thus the function

f : R1 × R1 × R1 → R1 is also nonconvex and

depends on t.
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Assume that y, z, T1, T2 ∈ R1, T2 > T1 + 2 and

v̂ : [T1, T2] → R1 is an optimal solution of the

problem (P3). Note that the problem (P3) has

a solution since f is continuous and f(t, x, ·) :

R1 → R1 is convex and grows superlinearly at

infinity for each (t, x) ∈ [0,∞)×R1.

Define v : [T1, T2] → R1 by

v(t) = y+(cos(T1+1)−y)(t−T1), t ∈ [T1, T1+1],

v(t) = cos(t), t ∈ [T1 +1, T2 − 1],

v(t) = cos(T2 − 1) + (t− T2 +1)(z − cos(T2)),

t ∈ [T2 − 1, T2].
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It is easy to see that∫ T2−1

T1+1
f(t, v(t), v′(t))dt = 0

and ∫ T2

T1
f(t, v̂(t), v̂′(t))dt

≤
∫ T2

T1
f(t, v(t), v′(t))dt

=
∫ T1+1

T1
f(t, v(t), v′(t))dt+

∫ T2

T2−1
f(t, v(t), v′(t))dt

≤ 2 sup{|f(t, x, u)| :

t, x, u ∈ R1, |x|, |u| ≤ |y|+ |z|+1}.

Thus ∫ T2

T1
f(t, v̂(t), v̂′(t))dt ≤ c1(|y|, |z|),
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where

c1(|y|, |z|) = 2 sup{|f(t, x, u)| :

t, x, u ∈ R1, |x|, |u| ≤ |y|+ |z|+1}.

For any ϵ ∈ (0,1) we have

mes{t ∈ [T1, T2] :

|v̂(t)− cos(t)| > ϵ}

≤ ϵ−2
∫ T2

T1
f(t, v̂(t), v̂′(t))dt

≤ ϵ−2c1(|y|, |z|).

Since the constant c1(|y|, |z|) does not depend

on T2 and T1 we conclude that if T2 − T1 is

sufficiently large, then the optimal solution v̂(t)

is equal to cos(t) up to ϵ for most t ∈ [T1, T2].
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Again, as in the case of convex time indepen-

dent problems we can show that

{t ∈ [T1, T2] : |x(t)− cos(t)| > ϵ}

⊂ [T1, T1 + τ ] ∪ [T2 − τ, T2]

where τ > 0 is a constant which depends only

on ϵ, |y| and |z|.

This example shows that there exist noncon-

vex time dependent integrands which have the

turnpike property with the same type of con-

vergence as in the case of convex autonomous

variational problems. The difference is that

the turnpike is not a singleton but an abso-

lutely continuous time dependent function de-

fined on the infinite interval [0,∞). This leads

us to the following definition of the turnpike

property for general integrands.
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Let us consider the following variational prob-

lem: ∫ T2

T1
f(t, v(t), v′(t))dt→ min, (P )

v : [T1, T2] → Rn is an absolutely continuous

function such that v(T1) = y, v(T2) = z.

Here T1 < T2 are real numbers, y and z are

elements of the n-dimensional Euclidean space

Rn and an integrand f : [0,∞)×Rn×Rn → R1

is a continuous function.
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We say that the integrand f has the turnpike

property if there exists a locally absolutely con-

tinuous function Xf : [0,∞) → Rn (called the

“turnpike”) which depends only on f and sat-

isfies the following condition:

For each bounded set K ⊂ Rn and each ϵ > 0

there exists a constant T (K, ϵ) > 0 such that

for each T1 ≥ 0, each T2 ≥ T1 + 2T (K, ϵ),

each y, z ∈ K and each optimal solution v :

[T1, T2] → Rn of variational problem (P), the

inequality |v(t) − Xf(t)| ≤ ϵ holds for all t ∈
[T1 + T (K, ϵ), T2 − T (K, ϵ)].
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The turnpike property is very important for ap-

plications. Suppose that the integrand f has

the turnpike property, K and ϵ are given, and

we know a finite number of “approximate” so-

lutions of the problem (P). Then we know the

turnpike Xf , or at least its approximation, and

the constant T (K, ϵ) which is an estimate for

the time period required to reach the turnpike.

This information can be useful if we need to

find an “approximate” solution of the problem

(P) with a new time interval [T1, T2] and the

new values y, z ∈ K at the end points T1 and

T2.
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Namely instead of solving this new problem

on the “large” interval [T1, T2] we can find an

“approximate” solution of problem (P) on the

“small” interval [T1, T1+T (K, ϵ)] with the val-

ues y,Xf(T1 + T (K, ϵ)) at the end points and

an “approximate” solution of problem (P) on

the “small” interval [T2 − T (K, ϵ), T2] with the

values Xf(T2 − T (K, ϵ)), z at the end points.

Then the concatenation of the first solution,

the function Xf : [T1 + T (K, ϵ), T2 − T (K, ϵ)]

and the second solution is an “approximate”

solution of problem (P) on the interval [T1, T2]

with the values y, z at the end points.
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The turnpike properties are discussed in A. Za-

slavski, Turnpike Properties in the Calculus of

Variations and Optimal Control, Springer, New

York, 2006.

In Chapter 1 we introduce a space M of con-

tinuous integrands f : [0,∞) × Rn × Rn → R1.

This space is equipped with a natural complete

metric. We show that for any initial condition

x0 ∈ Rn there exists a locally absolutely contin-

uous function x : [0,∞) → Rn with x(0) = x0
such that for each T1 ≥ 0 and T2 > T1 the func-

tion x : [T1, T2] → Rn is a solution of problem

(P) with y = x(T1) and z = x(T1). We also

establish that for every bounded set E ⊂ Rn

the C([T1, T2]) norms of approximate solutions

x : [T1, T2] → Rn for the problem (P) with

y, z ∈ E are bounded by some constant which

does not depend on T1 and T2.
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In Chapter 2 we establish the turnpike property

stated above for a generic integrand f ∈ M.

We establish the existence of a set F ⊂ M
which is a countable intersection of open ev-

erywhere dense sets in M such that for each

f ∈ F the turnpike property holds. Moreover

we show that the turnpike property holds for

approximate solutions of variational problems

with a generic integrand f and that the turn-

pike phenomenon is stable under small pertu-

bations of a generic integrand f .

In Chapters 3-5 we study turnpike properties

for autonomous problems (P) with integrands

f : Rn × Rn → R1 which do not depend on t.

Since the turnpike theorems of Chapter 2 are

of generic nature and the subset of M which

consists of all time independent integrands are

nowhere dense, the results of Chapter 2 can

not be applied for this subset.
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Moreover, we cannot expect to obtain the turn-

pike property stated above for the general au-

tonomous case. Indeed, if an integrand f does

not depend on t and has a turnpike, then this

turnpike should also be time independent. It

means that the turnpike is a stationary trajec-

tory (a singleton). But it is not true when a

time independent integrand f is not a convex

function.

Consider the following example. Let

f(x1, x2, u1, u2)

= (x21 + x22 − 1)2 + (u1 + x2)
2 + (u2 − x1)

2,

(x1, x2, u1, u2) ∈ R2 ×R2

and consider the family of the variational prob-

lems
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∫ T

0
f(v1(t), v2(t), v

′
1(t), v

′
2(t))dt→ min, (P4)

(v1, v2) : [0, T ] → R2

is an absolutely continuous function

such that (v1, v2)(0) = y, (v1, v2)(T ) = z,

where y = (y1, y2), z = (z1, z2) ∈ R2 and T >
0.

The integrand f does not depend on t. Since
f is continuous and for each x = (x1, x2) ∈
R2 the function f(x, ·) : R2 → R1 is convex
and grows superlinearly at infinity, the problem
(P4) has a solution for each T > 0 and each
y, z ∈ R2. Clearly, if T > 0, y = (cos(0), sin(0))
and z = (cos(T ), sin(T )), then the function

x̂1(t) = cos(t), x̂2(t) = sin(t), t ∈ [0, T ]

is a solution of the problem (P4). Thus, if the
integrand f has a turnpike property, then the
turnpike is not a singleton.
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Let T > 2, y, z ∈ R2 and let v̄ = (v̄1, v̄2) :

[0, T ] → R2 be a solution of the problem (P4).

Define a function v = (v1, v2) : [0, T ] → Rn by

v(t) = y+ t((cos(1), sin(1))− y), t ∈ [0,1],

v(t) = (cos(t), sin(t)), t ∈ [1, T − 1],

v(t) = (cos(T − 1), sin(T − 1))

+(t− T +1)(z − (cos(T − 1), sin(T − 1)),

t ∈ [T − 1, T ].

Then ∫ T−1

1
f(v(t), v′(t))dt = 0

and
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∫ T

0
(v̄1(t)

2 + v̄2(t)
2 − 1)2dt

≤
∫ T

0
f(v̄(t), v̄′(t))dt

≤
∫ T

0
f(v(t), v′(t))dt

=
∫ 1

0
f(v(t), v′(t))dt

+
∫ T

T−1
f(v(t), v′(t))dt

≤ sup{f(x1, x2, u1, u2) :

x1, x2, u1, u2 ∈ R1

and |xi|, |ui| ≤ 2|y|+2|z|+2, i = 1,2}.
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Thus ∫ T

0
(v̄1(t)

2 + v̄2(t)
2 − 1)2dt

≤ c2(|y|, |z|)

with

c2(|y|, |z|) = sup{f(x1, x2, u1, u2) :

x1, x2, u1, u2 ∈ R1

and |xi|, |ui| ≤ 2|y|+2|z|+2}.

Here c2(|y|, |z|) depends only on |y|, |z| and does
not depend on T . For any ϵ ∈ (0,1) we have

mes{t ∈ [0, T ] :

||(v̄1(t), v̄2(t))| − 1| > ϵ}

≤ mes{t ∈ [0, T ] :

|v̄1(t)2 + v̄2(t)
2 − 1| > ϵ2}

≤ ϵ−4
∫ T

0
(v̄1(t)

2 + v̄22 − 1)2dt
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≤ ϵ−4c2(|y|, |z|).

It means that for most t ∈ [0, T ], v̄(t) belongs

to the ϵ-neighborhood of the set {x ∈ R2 :

|x| = 1}. Thus we can say that the integrand

f has a weakened version of the turnpike prop-

erty and the set {|x| = 1} can be considered as

the turnpike for f .

For a general autonomous nonconvex problem

(P) we also have a version of the turnpike prop-

erty in which a turnpike is a compact subset of

Rn. This subset depends only on the integrand

f .
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Consider the following autonomous variational

problem: ∫ T

0
f(z(t), z′(t))dt→ min,

z(0 = x, z(T ) = y, (Pa)

z : [0, T ] → Rn is an absolutely continuous function

where T > 0, x, y ∈ Rn and f : R2n → R1 is an

integrand.
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We say that a time independent integrand f =

f(x, u) ∈ C(R2n) has the turnpike property if

there exists a compact set H(f) ⊂ Rn such

that for each bounded set K ⊂ Rn and each

ϵ > 0 there exist numbers L1 > L2 > 0 such

that for each T ≥ 2L1, each x, y ∈ K and an

optimal solution v : [0, T ] → Rn for the varia-

tional problem (Pa), the relation

dist(H(f), {v(t) :

t ∈ [τ, τ + L2]}) ≤ ϵ

holds for each τ ∈ [L1, T − L1]. (Here dist(·, ·)
is the Hausdorff metric).
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We also consider a weak version of this turn-

pike property for a time independent integrand

f(x, u). In this weak version, for an optimal so-

lution of the problem (Pa) with x, y ∈ Rn and

large enough T , the relation

dist(H(f), {v(t) :

t ∈ [τ, τ + L2]}) ≤ ϵ

with L2, which depends on ϵ and |x|, |y| and a

compact set H(f) ⊂ Rn depending only on the

integrand f , holds for each τ ∈ [0, T ] \E where

E ⊂ [0, T ] is a measurable subset such that

the Lebesgue measure of E does not exceed a

constant which depends on ϵ and on |x|, |y|.

These two turnpike properties for autonomous

problems (Pa) are considered in Chapters 3-5.
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In Chapter 3 we consider the space A of all

time independent integrands f ∈ M. We es-

tablish the existence of a set F ⊂ A which is

a countable intersection of open everywhere

dense sets in A such that for each f ∈ F
the weakened version of the turnpike property

holds.
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The turnpike property for time independent

integrands is established in Chapter 5 for a

generic element of a subset N of the space

A. The space N is a subset of all integrands

f ∈ A which satisfy some differentiability as-

sumptions.

In the other chapters of the monograph we es-

tablish a number of turnpike results (generic

and individual) for various classes of optimal

control problems. We study optimal control

of linear periodic systems with convex inte-

grands (Chapter 6) and optimal solutions of

linear systems with convex nonperiodic inte-

grands (Chapter 7). In Chapter 8 we estab-

lish turnpike theorems for discrete-time con-

trol systems in Banach spaces and in complete

metric spaces. Infinite-dimensional continuous-

time optimal control problems in a Hilbert space

are studied in Chapter 9. A turnpike theorem

for a class of differential inclusions arising in
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economic dynamics is proved in Chapter 10

and structure of optimal trajectories of convex

processes is studied in Chapter 11. In Chap-

ter 12 we establish a turnpike property for a

dynamic discrete-time zero-sum game.



The turnpike results mentioned above for vari-

ational problems were generalized in Structure

of Approximate Solutions of Optimal Control

Problems, Springer, 2013 by A. J. Zaslavski for

optimal control problems.

Denote by | · | the Euclidean norm in the k-

dimensional Euclidean space Rk. Let m,n be

natural numbers.
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We study a control system described by a dif-

ferential equation

x′(t) = G(t, x(t), u(t)) a. e. t ∈ I, (1)

where I is either R1 or [T1,∞) or [T1, T2] (−∞ <

T1 < T2 < ∞), and x : I → Rn is an absolutely

continuous (a. c.) function which satisfies

(t, x(t)) ∈ A for all t ∈ I, (2)

where A is a subset of Rn+1. The control

function u : I → Rm is Lebesgue measurable

and satisfies the feedback control constraints

u(t) ∈ U(t, x(t)) a. e. t ∈ I, (3)

where U : A → 2R
m

is a point to set mapping

with a graph

M = {(t, x, u) : (t, x) ∈ A, u ∈ U(t, x)}.

We suppose that M is a Borel measurable sub-

set of Rn+m+1 and that the function G :M →
Rn is borelian.
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For any t ∈ R1 set

A(t) = {x ∈ Rn : (t, x) ∈ A}.

We assume that the set A(t) ̸= ∅ for any t ∈
R1.

The performance of the above control system

is described by an integral functional

If(T1, T2, x, u) =
∫ T2

T1
f(t, x(t), u(t))dt,

where a borelian function f : M → R1 belongs

to a complete metric space of functions M de-

fined below.
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An a. c. function x : I → Rn, where I is either

R1 or [T1,∞) or [T1, T2] (−∞ < T1 < T2 <

∞), will be called a trajectory if there exists a

Lebesgue measurable function (referred to as

a control) u : I → Rm such that the pair (x, u)

satisfies (1), (2), (3) and the function t →
f(t, x(t), u(t)) is locally Lebesgue integrable on

I.

For any s ∈ R1 set s+ = max{s,0}.

Let a0 be a positive constant and let ψ : [0,∞) →
[0,∞) be an increasing function such that

ψ(t) → ∞ as t→ ∞.
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Denote by M the set of all borelian functions

f :M → R1 which satisfy the following growth

assumption:

(A)

f(t, x, u) ≥ max{ψ(|x|), ψ(|u|),

ψ([|G(t, x, u)|−a0|x|]+)[|G(t, x, u)|−a0|x|]+}−a0
for each (t, x, u) ∈M .

We equip the set M with the uniformity which

is determined by the following base:

E(N, ϵ, λ) = {(f, g) ∈ M×M : |f(t, x, u)−g(t, x, u)|

≤ ϵ for each (t, x, u) ∈M satisfying |x|, |u| ≤ N}

∩{(f, g) ∈ M×M : (|f(t, x, u)|+1)(|g(t, x, u)|+1)−1 ∈ [λ−1, λ]

for each (t, x, u) ∈M satisfying |x| ≤ N},

where N > 0, ϵ > 0 and λ > 1.
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Clearly, the uniform space M is Hausdorff and

has a countable base. Therefore M is metriz-

able. It is not difficult to show that the uniform

space M is complete.

We consider functionals of the form If(T1, T2, x, u),

where f ∈ M, −∞ < T1 < T2 < ∞ and x :

[T1, T2] → Rn, u : [T1, T2] → Rm is a trajectory-

control pair.
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For f ∈ M, a pair of numbers T1 ∈ R1, T2 > T1
and (T1, y), (T2, z) ∈ A set

Uf(T1, T2, y, z) = inf{If(T1, T2, x, u) :

x : [T1, T2] → Rn, u : [T1, T2] → Rm

is a trajectory-control pair satisfying

x(T1) = y, x(T2) = z},

σf(T1, T2, y) = inf{Uf(T1, T2, y, h) :

(T2, h) ∈ A}.

Here we assume that the infimum over empty

set is ∞.
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Denote by Mreg the set of all functions f ∈ M

which satisfy the following assumption:

(B) there exist a trajectory-control pair

xf : R1 → Rn, uf : R1 → Rm

and a number bf > 0 such that:

(i)

Uf(T1, T2, xf(T1), xf(T2)) = If(T1, T2, xf , uf)

for each T1 ∈ R1 and each T2 > T1;

(ii)

sup{If(j, j+1, xf , uf) : j = 0,±1,±2, . . . } <∞;
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(iii) for each S1 > 0 there exist S2 > 0 and an

integer c > 0 such that

If(T1, T2, xf , uf) ≤ If(T1, T2, x, u) + S2

for each T1 ∈ R1, each T2 ≥ T1 + c and each

trajectory-control pair x : [T1, T2] → Rn, u :

[T1, T2] → Rm which satisfies |x(T1)|, |x(T2)| ≤
S1;
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(iv) for each ϵ > 0 there exists δ > 0 such that
for each (T, z) ∈ A which satisfies

|z − xf(T )| ≤ δ

there are

τ1 ∈ (T, T + bf ] and τ2 ∈ [T − bf , T ),

and trajectory-control pairs

x1 : [T, τ1] → Rn, u1 : [T, τ1] → Rm,

x2 : [τ2, T ] → Rn, u2 : [τ2, T ] → Rm

which satisfy

x1(T ) = x2(T ) = z,

xi(τi) = xf(τi), i = 1,2,

|x1(t)− xf(t)| ≤ ϵ for all t ∈ [T, τ1],

|x2(t)− xf(t)| ≤ ϵ for all t ∈ [τ2, T ],

If(T, τ1, x1, u1) ≤ If(T, τ1, xf , uf) + ϵ,

If(τ2, T, x2, u2) ≤ If(τ2, T, xf , uf) + ϵ.
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Note that assumption (B) means that the trajectory-

control pair

xf : R1 → Rn, uf : R1 → Rm

is a solution of the corresponding infinite hori-

zon optimal control problem associated with

the integrand f and that certain controllabil-

ity properties hold near this trajectory-control

pair.
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Theorem 1 1. Let f ∈ Mreg and S0 > 0.

Then there exists S > 0 such that for each pair

of real numbers T1 < T2 and each trajectory-

control pair

x : [T1, T2] → Rn, u : [T1, T2] → Rm

which satisfies |x(T1)| ≤ S0 the following in-

equality holds:

If(T1, T2, xf , uf) ≤ If(T1, T2, x, u) + S.

2. Let f ∈ Mreg. Then for each s ∈ R1 and

each trajectory-control pair

x : [s,∞) → Rn, u : [s,∞) → Rm

one of the following relations holds:

(a)

If(s, t, x, u)− If(s, t, xf , uf) → ∞ as t→ ∞;
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(b)

sup{|If(s, t, xf , uf)−If(s, t, x, u)| : t ∈ (s,∞)} <∞.

Moreover, if the relation (b) holds, then

sup{|x(t)| : t ∈ [s,∞)} <∞.



For each f ∈ Mreg and each r > 0 we define a

function fr ∈ M by

fr(t, x, u) = f(t, x, u) + rmin{|x− xf(t)|, 1}

for all (t, x, u) ∈M.

It is easy to see that fr ∈ Mreg for each f ∈
Mreg and each r > 0.

Let A be a subset of Mreg such that fr ∈ A for

each f ∈ A and each r ∈ (0,1). Denote by Ā

the closure of A in the uniform space M and

consider the topological subspace Ā ⊂ M with

the relative topology.
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There exists a set F ⊂ Ā which is a countable

intersection of open everywhere dense sets in

Ā and such the following theorems hold.

Theorem 2 For each f ∈ F and each S > 0

there exist a neighborhood U of f in M and

positive numbers δ,Q such that the following

assertions hold:

inf{Ug(T1, T2, y1, y2) : (Ti, yi) ∈ A, i = 1,2} <∞

for each g ∈ U, each T1 ∈ R1 and each T2 > T1;

for each g ∈ U, each T1 ∈ R1, each T2 ≥ T1+1

and each trajectory-control pair

x : [T1, T2] → Rn, u : [T1, T2] → Rm

which satisfies

Ig(T1, T2, x, u)
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≤ inf{Ug(T1, T2, y1, y2) : (Ti, yi) ∈ A, i = 1,2}+S

and

Ig(T1, T2, x, u) ≤ Ug(T1, T2, x(T1), x(T2)) + δ

the following inequality holds:

|x(t)| ≤ Q for all t ∈ [T1, T2].

Theorem 2 establishes uniform boundedness of

approximate solutions of optimal control prob-

lems.

The next theorem is our first turnpike result.



Theorem 3 Let f ∈ F. Then there exists a

bounded continuous function Xf : R1 → Rn

such that the following property holds.

For each S, ϵ > 0 there exist a neighborhood U
of f in M and real numbers ∆ > 0, δ ∈ (0, ϵ)

such that for each g ∈ U, each T1 ∈ R1, each

T2 ≥ T1 +2∆ and each trajectory-control pair

x : [T1, T2] → Rn, u : [T1, T2] → Rm satisfying

Ig(T1, T2, x, u) ≤ inf{Ug(T1, T2, y1, y2) :

(Ti, yi) ∈ A, i = 1,2}+ S,

Ig(T1, T2, x, u) ≤ Ug(T1, T2, x(T1), x(T2)) + δ

the following inequality holds:

|x(t)−Xf(t)| ≤ ϵ for all t ∈ [T1 +∆, T2 −∆].

Moreover, if |x(T1)−Xf(T1)| ≤ δ, then

|x(t)−Xf(t)| ≤ ϵ for all t ∈ [T1, T2 −∆]

48



and if |x(T2)−Xf(T2)| ≤ δ, then

|x(t)−Xf(t)| ≤ ϵ for all t ∈ [T1 +∆, T2].

The next theorem is our second turnpike result.



Theorem 4 Let f ∈ F, let a bounded contin-

uous function Xf : R1 → Rn be as guaranteed

by Theorem 3 and let ϵ,M be a pair of positive

numbers. Then there exist a neighborhood U
of f in M, real numbers l > 0, L > 0 and a nat-

ural number p such that for each g ∈ U, each

T1 ∈ R1, each T2 ≥ T1+L and each trajectory-

control pair x : [T1, T2] → Rn, u : [T1, T2] → Rm

which satisfies

Ig(T1, T2, x, u) ≤ inf{Ug(T1, T2, y1, y2) :

(Ti, yi) ∈ A, i = 1,2}+M

there exist finite sequences

{ai}
q
i=1, {bi}

q
i=1 ⊂ [T1, T2],

where q ≤ p is a natural number, such that

ai ≤ bi ≤ ai+ l for all integers i = 1, . . . , q

and

|x(t)−Xf(t)| ≤ ϵ for all t ∈ [T1, T2]\∪
q
i=1[ai, bi].
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